论文标题
通过共享GO术语的组合分析(字幕:Revango:使用基因本体论对网络的功能一致性的严格评估),确切的全球网络对齐方式的确切$ p $ - 值
Exact $p$-values for global network alignments via combinatorial analysis of shared GO terms (Subtitle: REFANGO: Rigorous Evaluation of Functional Alignments of Networks using Gene Ontology)
论文作者
论文摘要
网络对齐旨在在两个或多个物种的蛋白质 - 蛋白质相互作用(PPI)网络中发现拓扑相似的区域,因为拓扑相似的区域倾向于执行相似的功能。尽管存在多种网络对齐算法和拓扑相似性的度量,但目前尚无黄金标准来评估任何一种在功能上相似的区域的能力。在这里,我们提出了一种正式的,数学和统计上严格的方法,用于评估两个PPI网络之间的全球1-1对齐共享术语的统计意义。我们使用Compinatorics精确计算$ K $蛋白共享特定GO期限的可能网络对齐数。当除以所有可能的网络对齐的数量时,这提供了一个明确的,精确的$ p $ - 值,以相对于特定的GO期限。就像Blast的P值和位分数一样,此方法的设计不是指导任何特定对齐的形成,而是为了提供对固定的,给定的对准的事后评估。
Network alignment aims to uncover topologically similar regions in the protein-protein interaction (PPI) networks of two or more species under the assumption that topologically similar regions tend to perform similar functions. Although there exist a plethora of both network alignment algorithms and measures of topological similarity, currently no gold standard exists for evaluating how well either is able to uncover functionally similar regions. Here we propose a formal, mathematically and statistically rigorous method for evaluating the statistical significance of shared GO terms in a global, 1-to-1 alignment between two PPI networks. We use combinatorics to precisely count the number of possible network alignments in which $k$ proteins share a particular GO term. When divided by the number of all possible network alignments, this provides an explicit, exact $p$-value for a network alignment with respect to a particular GO term. Just as with BLAST's p-values and bit-scores, this method is designed not to guide the formation of any particular alignment, but instead to provide an after-the-fact evaluation of a fixed, given alignment.