论文标题

Finsler歧管上的双极性不平等

A bipolar Hardy inequality on Finsler manifolds

论文作者

Mester, Ágnes, Kristály, Alexandru

论文摘要

我们在完全,不一定是可逆的Finsler歧管上建立了双极性硬性不平等。我们表明,我们的结果在很大程度上取决于Finsler结构的几何形状,即可逆性常数$ R_F $和均匀性常数$ L_F $。我们的结果代表了由于Cazacu和Zuazua(2013)和Faraci,Farkas和Kristály(2018)所考虑的Riemannian案件,欧几里得多极不平等的Finslerian对应物。

We establish a bipolar Hardy inequality on complete, not necessarily reversible Finsler manifolds. We show that our result strongly depends on the geometry of the Finsler structure, namely on the reversibility constant $r_F$ and the uniformity constant $l_F$. Our result represents a Finslerian counterpart of the Euclidean multipolar Hardy inequality due to Cazacu and Zuazua (2013) and the Riemannian case considered by Faraci, Farkas and Kristály (2018).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源