论文标题
Finsler歧管上的双极性不平等
A bipolar Hardy inequality on Finsler manifolds
论文作者
论文摘要
我们在完全,不一定是可逆的Finsler歧管上建立了双极性硬性不平等。我们表明,我们的结果在很大程度上取决于Finsler结构的几何形状,即可逆性常数$ R_F $和均匀性常数$ L_F $。我们的结果代表了由于Cazacu和Zuazua(2013)和Faraci,Farkas和Kristály(2018)所考虑的Riemannian案件,欧几里得多极不平等的Finslerian对应物。
We establish a bipolar Hardy inequality on complete, not necessarily reversible Finsler manifolds. We show that our result strongly depends on the geometry of the Finsler structure, namely on the reversibility constant $r_F$ and the uniformity constant $l_F$. Our result represents a Finslerian counterpart of the Euclidean multipolar Hardy inequality due to Cazacu and Zuazua (2013) and the Riemannian case considered by Faraci, Farkas and Kristály (2018).