论文标题
在微涡轮上的磁场中电击加速电子的最大能量
The maximum energy of shock-accelerated electrons in a microturbulent magnetic field
论文作者
论文摘要
相对论的冲击传播到具有低磁化的培养基中的相对论冲击是由小规模但非常强的磁场湍流产生和维持的。这种所谓的“微扰动”修饰了典型的冲击加速过程,尤其是电子。在这项工作中,我们对电子(MC)的电子进行了蒙特卡洛(MC)模拟,该电子遇到了微涡轮磁场的冲击。模拟涵盖了冲击速度,加速度效率和峰值磁场强度的三维参数空间。从中,采用了马尔可夫链蒙特卡洛(MCMC)方法来估计MC模拟的电子光谱的最大电子动量。在估计了在天体物理相关的参数空间上分布良好的许多点上的该数量之后,MCMC方法再次用于估计经验公式的参数,该参数计算了该参数空间中任何地方的费米 - 加速电子总体的最大动量。最大能量在冲击速度下作为断裂的幂律被很好地征用,当电击减速到电子可以从冲击上游逃脱的点时,发生断裂。
Relativistic shocks propagating into a medium with low magnetization are generated and sustained by small-scale but very strong magnetic field turbulence. This so-called "microturbulence" modifies the typical shock acceleration process, and in particular that of electrons. In this work we perform Monte Carlo (MC) simulations of electrons encountering shocks with microturbulent fields. The simulations cover a three-dimensional parameter space in shock speed, acceleration efficiency, and peak magnetic field strength. From these, a Markov Chain Monte Carlo (MCMC) method was employed to estimate the maximum electron momentum from the MC-simulated electron spectra. Having estimated this quantity at many points well-distributed over an astrophysically relevant parameter space, an MCMC method was again used to estimate the parameters of an empirical formula that computes the maximum momentum of a Fermi-accelerated electron population anywhere in this parameter space. The maximum energy is well-approximated as a broken power-law in shock speed, with the break occurring when the shock decelerates to the point where electrons can begin to escape upstream from the shock.