论文标题
Yang-Mills系统的较低规律性适合2D
Low regularity well-posedness for the Yang-Mills system in 2D
论文作者
论文摘要
Yang-Mills系统在两个空间维度中的库奇问题的问题是针对最小的规律性假设的数据。在基于$ l^2 $的Sobolev空间中的经典数据中,我们必须假设,相对于缩放,衍生物的数量高于关键规律性的$ 3/4 $。对于基于$ l^r $的傅立叶 - lebesgue空间中的数据,此结果可以提高$ 1/4 $衍生的衍生产品,因为缩放含义为$ r \ \ to \ r \至1 $。
The Cauchy problem for the Yang-Mills system in two space dimensions is treated for data with minimal regularity assumptions. In the classical case of data in $L^2$-based Sobolev spaces we have to assume that the number of derivatives is more than $3/4$ above the critical regularity with respect to scaling. For data in $L^r$-based Fourier-Lebesgue spaces this result can be improved by $1/4$ derivative in the sense of scaling as $r \to 1$ .