论文标题

Treed分布式滞后非线性模型

Treed distributed lag nonlinear models

论文作者

Mork, Daniel, Wilson, Ander

论文摘要

在孕产妇暴露于空气污染的研究中,儿童的健康结果会因怀孕期间观察到的暴露而退化。分布式滞后非线性模型(DLNM)是一种统计方法,通常在假定暴露效果的情况下估算暴露时间响应函数。 DLNM的先前实现估计了通过双变量基膨胀进行参数的暴露时间反应表面。但是,诸如花键之类的基础函数假设整个暴露时间响应表面的平滑度,这在暴露仅在特定时间窗口中与结果相关联的设置可能是不现实的。我们提出了一个基于贝叶斯添加剂回归树的DLNM估算的框架。我们的方法使用一组回归树进行操作,每个回归树都假设整个曝光时间空间中的分段恒定关系。在模拟中,我们表明,当曝光时间表面不光滑时,我们的模型优于基于样条的模型,而两种方法在真实表面平滑的设置中都相似。重要的是,所提出的方法是较低的方差,更精确地确定关键窗口,在此期间与未来的健康结果相关联。我们应用我们的方法来估计孕产妇接触到PM $ _ {2.5} $与美国科罗拉多州出生队列中的出生体重之间的关联。

In studies of maternal exposure to air pollution a children's health outcome is regressed on exposures observed during pregnancy. The distributed lag nonlinear model (DLNM) is a statistical method commonly implemented to estimate an exposure-time-response function when it is postulated the exposure effect is nonlinear. Previous implementations of the DLNM estimate an exposure-time-response surface parameterized with a bivariate basis expansion. However, basis functions such as splines assume smoothness across the entire exposure-time-response surface, which may be unrealistic in settings where the exposure is associated with the outcome only in a specific time window. We propose a framework for estimating the DLNM based on Bayesian additive regression trees. Our method operates using a set of regression trees that each assume piecewise constant relationships across the exposure-time space. In a simulation, we show that our model outperforms spline-based models when the exposure-time surface is not smooth, while both methods perform similarly in settings where the true surface is smooth. Importantly, the proposed approach is lower variance and more precisely identifies critical windows during which exposure is associated with a future health outcome. We apply our method to estimate the association between maternal exposure to PM$_{2.5}$ and birth weight in a Colorado USA birth cohort.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源