论文标题
旋转对约束种子和$ \ gtrsim的生长的影响10^9m_ \ odot $ $ z> 6.5 $ quasars in $ z> 6.5 $ quasars
Effects of spin on constraining the seeds and growth of $\gtrsim 10^9M_\odot$ supermassive black holes in $z>6.5$ Quasars
论文作者
论文摘要
$ \ gtrsim10^9m_ \ odot $ Supermassive黑洞(SMBHS)在Redshift $ z> 6 $中提出了一个问题,即从小种子BHS中的宇宙时间($ <1 $ \,gyr)在宇宙时间内如何长大的问题。在这封信中,我们通过自言自语地考虑旋转进化以及超级 - 埃德丁顿积聚的可能性,使用$ z> 6.5美元的$ 14 $类星体的观察来限制其种子和早期增长。我们发现,自旋在早期SMBH的生长中起着重要作用,对种子质量和超级 - 埃德丁顿积分的限制在很大程度上取决于假定的增生史。如果增生与单个(或少数)发作相一致,导致大部分积聚时间的旋转高,那么SMBH的生长相对较慢。而且,如果增生与许多发作混乱,并且在每一集中,总积聚质量远小于SMBH质量,导致中度/低旋转,那么生长相对较快。种子质量和超级埃德丁顿积分的限制是退化的。如果种子质量不是$ ed-eDdington的质量不是$ \ gg ggg10^^5} m,则需要大量分数($ \ gtrsim0.1 \%-1 \%-1 \%-1 \%-1 \%-1 \%-1 \%-1 \%$,但$ \ sim 3-4 $ dex在对数尺度上以$ 10^3-10^4 m_ \ odot $ seeds的$ 10^3-10^4 m_ \ odot $ seeds)的super-eDdington增值是必需的。如果吸积是混乱的,则积分分数会适度放松。
The existence of $\gtrsim10^9M_\odot$ supermassive black holes (SMBHs) at redshift $z>6$ raises the problem of how such SMBHs can grow up within the cosmic time ($<1$\,Gyr) from small seed BHs. In this letter, we use the observations of $14$ Quasars at $z>6.5$ with mass estimates to constrain their seeds and early growth, by self-consistently considering the spin evolution and the possibility of super-Eddington accretion. We find that spin plays an important role in the growth of early SMBHs, and the constraints on seed mass and super-Eddington accretion fraction strongly depend on the assumed accretion history. If the accretion is coherent with single (or a small number of) episode(s), leading to high spins for the majority of accretion time, then the SMBH growth is relatively slow; and if the accretion is chaotic with many episodes and in each episode the total accreted mass is much less than the SMBH mass, leading to moderate/low spins, then the growth is relatively fast. The constraints on the seed mass and super-Eddington accretion fraction are degenerate. A significant fraction ($\gtrsim0.1\%-1\%$ in linear scale but $\sim 3-4$ dex in logarithmic scale for $10^3-10^4 M_\odot$ seeds) of super-Eddington accretion is required if the seed mass is not $\gg10^{5}M_\odot$, and the requirements of high seed-mass and/or super-Eddington accretion fraction are moderately relaxed if the accretion is chaotic.