论文标题

Gevrey估计了弱耗散系统中摩托肌渐近膨胀的估计

Gevrey estimates for asymptotic expansions of tori in weakly dissipative systems

论文作者

Bustamante, Adrian P., de la Llave, Rafael

论文摘要

我们认为具有具有kam圆环的环的分析符号图的家族奇异扰动。扰动引入耗散并包含可调参数。通过选择可调节参数,可以确保圆环在扰动下持续存在。这种模型在天体力学中很常见。在现场理论中,可调节的参数称为反术和天体力学,漂移。众所周知,对于准周期解决方案和违反术语,扰动的力量都有正式的扩展。 我们证明了准碘溶液的渐近扩展和反术满足Gevrey估计值。也就是说,扩展的$ n $ then期限为$ n!$的功率。 Gevrey类($ n!$的功率)仅取决于频率的Diophantine条件和摩擦系数在扰动参数中的顺序。 我们引入的证明方法可能不仅仅是此处考虑的问题。我们在功率扩展的空间中考虑了一种修改的牛顿方法。由于在KAM理论中是Custumary,该方法的每个步骤均在较小的域中估计。与KAM结果相反,我们控制牛顿方法的域非常快,牛顿方法并未证明解决方案是分析性的。另一方面,通过仔细检查过程,我们可以获得有关扩展系数的估计,并得出结论该系列是Gevrey。

We consider a singular perturbation for a family of analytic symplectic maps of the annulus possessing a KAM torus. The perturbation introduces dissipation and contains an adjustable parameter. By choosing the adjustable parameter, one can ensure that the torus persists under perturbation. Such models are common in celestial mechanics. In field theory, the adjustable parameter is called the counterterm and in celestial mechanics, the drift. It is known that there are formal expansions in powers of the perturbation both for the quasi-periodic solution and the counterterm. We prove that the asymptotic expansions for the quasiperiodic solutions and the counterterm satisfy Gevrey estimates. That is, the $n$-th term of the expansion is bounded by a power of $n!$. The Gevrey class (the power of $n!$) depends only on the Diophantine condition of the frequency and the order of the friction coefficient in powers of the perturbative parameter. The method of proof we introduce may be of interest beyond the problem considered here. We consider a modified Newton method in a space of power expansions. As it is custumary in KAM theory, each step of the method is estimated in a smaller domain. In contrast with the KAM results, the domains where we control the Newton method shrink very fast and the Newton method does not prove that the solutions are analytic. On the other hand, by examining carefully the process, we can obtain estimates on the coefficients of the expansions and conclude the series are Gevrey.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源