论文标题
堕落基因座的动机类和尖锐的布里尔·纳特品种
Motivic classes of degeneracy loci and pointed Brill-Noether varieties
论文作者
论文摘要
动机Chern和Hirzebruch课程是具有K理论和同源类的多项式,作为系数,专门针对Chern-Schwartz-Macpherson课程,K理论课和Cappell-Shaneson L-Classes。我们提供公式来计算格拉斯曼尼亚和杂色堕落基因座的动机和内姆布鲁克类别。我们应用结果来获得古典和单点的Brill-Noether品种的Hirzebruch $χ_y$ genus,因此它们的拓扑效果特征,全体形状的Euler特征和签名。
Motivic Chern and Hirzebruch classes are polynomials with K-theory and homology classes as coefficients, which specialize to Chern-Schwartz-MacPherson classes, K-theory classes, and Cappell-Shaneson L-classes. We provide formulas to compute the motivic Chern and Hirzebruch classes of Grassmannian and vexillary degeneracy loci. We apply our results to obtain the Hirzebruch $χ_y$-genus of classical and one-pointed Brill-Noether varieties, and therefore their topological Euler characteristic, holomorphic Euler characteristic, and signature.