论文标题
视频吸引频道的关注网络用于车辆重新识别
Viewpoint-Aware Channel-Wise Attentive Network for Vehicle Re-Identification
论文作者
论文摘要
车辆重新识别(RE-ID)与不同摄像机的同一车辆的图像匹配。这在根本上是具有挑战性的,因为不同观点引起的截然不同的外观会使框架无法匹配两辆相同身份的车辆。大多数现有作品通过通过空间注意机制提取观点感知功能来解决该问题,但是,该功能通常遭受嘈杂的注意力图或以其他方式需要昂贵的关键点标签以提高质量。在这项工作中,我们通过从不同方面观察注意力机制来提出观点感知渠道的注意机制(VCAM)。我们的VCAM启用了功能学习框架频道 - 根据输入车辆的“观点”,从而重新尊重每个功能地图的重要性。广泛的实验验证了拟议方法的有效性,并表明我们对公共Veri-776数据集的最新方法表现出色,并在2020年AI City Challenge上获得有希望的结果。我们还进行了其他实验,以证明我们的VCAM实际上如何有助于学习框架的解释性。
Vehicle re-identification (re-ID) matches images of the same vehicle across different cameras. It is fundamentally challenging because the dramatically different appearance caused by different viewpoints would make the framework fail to match two vehicles of the same identity. Most existing works solved the problem by extracting viewpoint-aware feature via spatial attention mechanism, which, yet, usually suffers from noisy generated attention map or otherwise requires expensive keypoint labels to improve the quality. In this work, we propose Viewpoint-aware Channel-wise Attention Mechanism (VCAM) by observing the attention mechanism from a different aspect. Our VCAM enables the feature learning framework channel-wisely reweighing the importance of each feature maps according to the "viewpoint" of input vehicle. Extensive experiments validate the effectiveness of the proposed method and show that we perform favorably against state-of-the-arts methods on the public VeRi-776 dataset and obtain promising results on the 2020 AI City Challenge. We also conduct other experiments to demonstrate the interpretability of how our VCAM practically assists the learning framework.