论文标题
新的sublrinear算法和下限用于LIS估计
New Sublinear Algorithms and Lower Bounds for LIS Estimation
论文作者
论文摘要
估计阵列中最长增加子序列(LIS)的长度是重要性的问题。尽管LIS估计问题及其受到的关注量具有重要意义,但问题的重要方面尚未完全理解。 LIS估计的下限没有比通过测试单调性(用于自适应或非自适应算法)所隐含的明显界限更好的。在本文中,我们在LIS估计的复杂性上给出了第一个非平凡的下限,还提供了补充我们下限的新型算法。 具体来说,对于(0,1)$中的每个常数$ε\,每种非适应性算法都在$ n $中以$ n $的长度估算到$ $ε\ cdot n $中的LIS的长度估计,必须使$ \ log log^{ω(\ log log log log log log log(\ log log log(1/ε))n $ queries $ queries。接下来,我们设计了非适应性LIS估计算法,其复杂性的降低是阵列中不同值的数量$ r $的降低。我们首先提出了一种简单的算法,该算法使$ \ tilde {o}(r/ε^3)$查询,并以$εn$界定的添加误差近似LIS长度。然后,我们使用它来构建具有查询复杂性的非适应性算法$ \ tilde {o}(\ sqrt {r} \ cdot \ cdot \ text {poly}(1/λ))$,对于带有lis至少$λn$的阵列,输出了$λn$,输出多个$ω(λ)$ - 大约lis。 最后,我们描述了一种非适应性擦除弹性测试仪的分类,并具有查询复杂性$ o(\ log n)$。我们的结果意味着,非适应性耐受性测试严格比单调性的自然性质的非适应性擦除耐药性测试要严格难。
Estimating the length of the longest increasing subsequence (LIS) in an array is a problem of fundamental importance. Despite the significance of the LIS estimation problem and the amount of attention it has received, there are important aspects of the problem that are not yet fully understood. There are no better lower bounds for LIS estimation than the obvious bounds implied by testing monotonicity (for adaptive or nonadaptive algorithms). In this paper, we give the first nontrivial lower bound on the complexity of LIS estimation, and also provide novel algorithms that complement our lower bound. Specifically, for every constant $ε\in (0,1)$, every nonadaptive algorithm that outputs an estimate of the length of the LIS in an array of length $n$ to within an additive error of $ε\cdot n$ has to make $\log^{Ω(\log (1/ε))} n)$ queries. Next, we design nonadaptive LIS estimation algorithms whose complexity decreases as the the number of distinct values, $r$, in the array decreases. We first present a simple algorithm that makes $\tilde{O}(r/ε^3)$ queries and approximates the LIS length with an additive error bounded by $εn$. We then use it to construct a nonadaptive algorithm with query complexity $\tilde{O}(\sqrt{r} \cdot \text{poly}(1/λ))$ that, for an array with LIS length at least $λn$, outputs a multiplicative $Ω(λ)$-approximation to the LIS length. Finally, we describe a nonadaptive erasure-resilient tester for sortedness, with query complexity $O(\log n)$. Our result implies that nonadaptive tolerant testing is strictly harder than nonadaptive erasure-resilient testing for the natural property of monotonicity.