论文标题

学习解码:用于解码稀疏基于图的频道代码的增强学习

Learning to Decode: Reinforcement Learning for Decoding of Sparse Graph-Based Channel Codes

论文作者

Habib, Salman, Beemer, Allison, Kliewer, Joerg

论文摘要

我们在这项工作中表明,增强学习可以成功地应用于简短至中等长度的基于图形的通​​道代码。具体而言,我们专注于低密度奇偶校验检查(LDPC)代码,例如,由于其出色的误差纠正性能,因此在5G蜂窝通信系统的背景下已标准化。这些代码通常是通过信念传播的迭代解码来解码的,在相应的两部分(Tanner)图中,代码图通过洪水(即,Tanner图中的所有检查和可变节点都会立即更新。相比之下,在本文中,我们利用了一个顺序更新策略,该策略选择了最佳检查节点(CN)计划以提高解码性能。特别是,我们将CN更新过程建模为具有依赖武器的多臂强盗过程,并采用Q学习方案来优化CN调度策略。为了降低学习复杂性,我们提出了一种新型的图形诱导的CN聚类方法,以将簇之间的依赖关系最小化,以分配状态空间。我们的结果表明,与文献中的其他解码方法相比,提出的强化学习计划不仅显着改善了解码性能,而且一旦学习了调度策略,就会大大降低解码的复杂性。

We show in this work that reinforcement learning can be successfully applied to decoding short to moderate length sparse graph-based channel codes. Specifically, we focus on low-density parity check (LDPC) codes, which for example have been standardized in the context of 5G cellular communication systems due to their excellent error correcting performance. These codes are typically decoded via belief propagation iterative decoding on the corresponding bipartite (Tanner) graph of the code via flooding, i.e., all check and variable nodes in the Tanner graph are updated at once. In contrast, in this paper we utilize a sequential update policy which selects the optimum check node (CN) scheduling in order to improve decoding performance. In particular, we model the CN update process as a multi-armed bandit process with dependent arms and employ a Q-learning scheme for optimizing the CN scheduling policy. In order to reduce the learning complexity, we propose a novel graph-induced CN clustering approach to partition the state space in such a way that dependencies between clusters are minimized. Our results show that compared to other decoding approaches from the literature, the proposed reinforcement learning scheme not only significantly improves the decoding performance, but also reduces the decoding complexity dramatically once the scheduling policy is learned.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源