论文标题
RGB-D自拍照的高保真3D数字人头创造
High-Fidelity 3D Digital Human Head Creation from RGB-D Selfies
论文作者
论文摘要
我们提出了一个全自动系统,该系统可以使用消费者RGB-D自拍照摄像头产生高保真的,照片现实的3D数字人头。该系统只需要用户在旋转头部时拍摄简短的自拍照RGB-D视频,并且可以在不到30秒的时间内产生高质量的头部重建。我们的主要贡献是一种新的面部几何建模和反射率合成程序,可显着改善最先进的方法。具体而言,鉴于输入视频,首先采用了两个阶段的框架选择过程来选择一些高质量的帧进行重建。然后,将基于可区分的渲染器3D形式模型(3DMM)拟合算法用于从多视rgb-d数据中恢复面部几何形状,该数据具有强大的3DMM基础的优势,该基础具有巨大的数据生成和扰动。我们的3DMM具有比常规3DMM更大的表达能力,这使我们仅使用线性基础恢复了更准确的面部几何形状。对于反射率综合,我们提出了一种混合方法,该方法将参数拟合和CNN结合在一起,以合成具有逼真的头发/毛/毛/皱纹细节的高分辨率反照率/正常地图。结果表明,我们的系统可以产生忠实的3D数字人体面孔,并具有非常现实的细节。主要代码和新构建的3MM基础可公开可用。
We present a fully automatic system that can produce high-fidelity, photo-realistic 3D digital human heads with a consumer RGB-D selfie camera. The system only needs the user to take a short selfie RGB-D video while rotating his/her head, and can produce a high quality head reconstruction in less than 30 seconds. Our main contribution is a new facial geometry modeling and reflectance synthesis procedure that significantly improves the state-of-the-art. Specifically, given the input video a two-stage frame selection procedure is first employed to select a few high-quality frames for reconstruction. Then a differentiable renderer based 3D Morphable Model (3DMM) fitting algorithm is applied to recover facial geometries from multiview RGB-D data, which takes advantages of a powerful 3DMM basis constructed with extensive data generation and perturbation. Our 3DMM has much larger expressive capacities than conventional 3DMM, allowing us to recover more accurate facial geometry using merely linear basis. For reflectance synthesis, we present a hybrid approach that combines parametric fitting and CNNs to synthesize high-resolution albedo/normal maps with realistic hair/pore/wrinkle details. Results show that our system can produce faithful 3D digital human faces with extremely realistic details. The main code and the newly constructed 3DMM basis is publicly available.