论文标题

曲线上粒子的动力学

Dynamics of Particles on a Curve with Pairwise Hyper-singular Repulsion

论文作者

Hardin, Douglas, Saff, Edward B., Shu, Ruiwen, Tadmor, Eitan

论文摘要

我们调查了$ n $颗粒的巨大时间行为,仅限于$ \ mathbb {r}^d $的平滑封闭曲线,并在欧几里得超单星的偏见riesz $ s $ syergy方面呈梯度流,并带有$ s>1。 $ n $ - 最小。此外,相对于沿曲线的弧度测量,此类颗粒的分布将接近均匀。

We investigate the large time behavior of $N$ particles restricted to a smooth closed curve in $\mathbb{R}^d$ and subject to a gradient flow with respect to Euclidean hyper-singular repulsive Riesz $s$-energy with $s>1.$ We show that regardless of their initial positions, for all $N$ and time $t$ large, their normalized Riesz $s$-energy will be close to the $N$-point minimal possible. Furthermore, the distribution of such particles will be close to uniform with respect to arclength measure along the curve.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源