论文标题
自动流量的节奏控制 - 第二部分:网格网络节奏和在线路由
Rhythmic Control of Automated Traffic -- Part II: Grid Network Rhythm and Online Routing
论文作者
论文摘要
连接和自动化的车辆(CAV)技术正在为城市运输经理提供更好的城市流动系统运行的巨大机会。但是,随着相应操作优化模型的计算时间随着车辆数量的增加而呈指数增长,实时实现存在重大挑战。遵循同伴论文(Chen等,2020),该论文提出了一种新型的自动交通控制方案,用于孤立的交叉点,本研究提出了网格网络上CAVS的网络级实时交通控制框架。提出的框架将节奏控制方法(RC)方法与在线路由算法集成在一起,以实现对网络上所有CAVS的无冲突控制,并在平均车辆延迟,网络流量吞吐量和计算可扩展性中实现卓越的性能。具体来说,我们构建了一个预设网络节奏,所有骑士都可以遵循该节奏,以在网络上移动并避免在所有交集处发生冲突。然后,基于网络节奏,我们将CAVS的在线路由作为混合整数线性程序制定,该程序在网络的所有入口及其实时的时空路由中优化了CAVS的入口时间。我们提供了足够的条件,即线性编程在线路由模型可以产生最佳整数解决方案。进行了广泛的数值测试,以显示在各种情况下提出的操作管理框架的性能。可以说的是,该框架能够实现可忽略的延迟并增加网络吞吐量。此外,计算时间结果也很有希望。在普通的个人计算机上,与2,000辆车解决无冲击控制优化问题的CPU时间仅为0.3 s。
Connected and automated vehicle (CAV) technology is providing urban transportation managers tremendous opportunities for better operation of urban mobility systems. However, there are significant challenges in real-time implementation, as the computational time of the corresponding operations optimization model increases exponentially with increasing vehicle numbers. Following the companion paper (Chen et al., 2020) which proposes a novel automated traffic control scheme for isolated intersections, this study proposes a network-level real-time traffic control framework for CAVs on grid networks. The proposed framework integrates a rhythmic control (RC) method with an online routing algorithm to realize collisionfree control of all CAVs on a network and achieve superior performance in average vehicle delay, network traffic throughput, and computational scalability. Specifically, we construct a preset network rhythm that all CAVs can follow to move on the network and avoid collisions at all intersections. Based on the network rhythm, we then formulate online routing for the CAVs as a mixed integer linear program, which optimizes the entry times of CAVs at all entrances of the network and their time-space routings in real time. We provide a sufficient condition that the linear programming relaxation of the online routing model yields an optimal integer solution. Extensive numerical tests are conducted to show the performance of the proposed operations management framework under various scenarios. It is illustrated that the framework is capable of achieving negligible delays and increased network throughput. Furthermore, the computational time results are also promising. The CPU time for solving a collision-free control optimization problem with 2,000 vehicles is only 0.3 s on an ordinary personal computer.