论文标题
逆动力学与直接转录公式中的正向动力学用于轨迹优化
Inverse Dynamics vs. Forward Dynamics in Direct Transcription Formulations for Trajectory Optimization
论文作者
论文摘要
最先进的刚性动力学库的基准报告了比远期替代方案更好地解决反向动态问题的性能。这些基准鼓励我们质疑该计算优势是否会转化为直接转录,其中计算刚体动力学及其衍生物占计算时间的很大一部分。在这项工作中,我们实施了一个优化框架,在该框架中,这两种方法都可以使用系统动力学。对于具有刚性接触的域,我们评估了每种方法的性能。我们的测试表明,使用逆动力学的配方更快地收敛,需要更少的迭代,并且对粗略的问题离散化更为强大。这些结果表明,应优选逆动力学来同时使用直接转录的同时使用非线性系统动力学。
Benchmarks of state-of-the-art rigid-body dynamics libraries report better performance solving the inverse dynamics problem than the forward alternative. Those benchmarks encouraged us to question whether that computational advantage would translate to direct transcription, where calculating rigid-body dynamics and their derivatives accounts for a significant share of computation time. In this work, we implement an optimization framework where both approaches for enforcing the system dynamics are available. We evaluate the performance of each approach for systems of varying complexity, for domains with rigid contacts. Our tests reveal that formulations using inverse dynamics converge faster, require less iterations, and are more robust to coarse problem discretization. These results indicate that inverse dynamics should be preferred to enforce the nonlinear system dynamics in simultaneous methods, such as direct transcription.