论文标题

在2D平方晶格上追逐渗透渗透

Chase-Escape Percolation on the 2D Square Lattice

论文作者

Kumar, Aanjaneya, Grassberger, Peter, Dhar, Deepak

论文摘要

Chase-Escape渗透是标准流行病模型的变化。在此模型中,每个站点都可以在三个状态之一中:空置,被单个猎物占据或由单个捕食者占领。猎物颗粒以$ p $的速度扩展到相邻的空地,而捕食者颗粒仅以$ 1 $ $ 1 $占用的猎物颗粒所占据的相邻位点,杀死了该地点存在的猎物粒子。发现猎物可以以非零的概率生存,如果$ p> p_c $带有$ p_c <1 $。使用蒙特卡洛模拟在方形晶格上,我们估计$ p_c = 0.49451 \ pm 0.00001 $的值,关键指数与无方向的渗滤通用类别一致。我们定义了该模型的离散时间平行更高版本,该版本提出了Chase-Escape和无向键渗透之间的关系。对于所有$ p <p_c $ in $ d $ dimensions,与标准渗透理论中的指数分布相反,吸收配置中的捕食者的数量具有伸展的指数分布。我们还研究了从线初始条件开始的问题,该条件在行的所有晶格点上的捕食者颗粒$ y = 0 $,而pery粒子在行上$ y = 1 $。在这种情况下,对于$ p_c <p <1 $,波动猎物的质量中心和捕食者前沿以相同的速度行驶。这种速度严格比伊甸园的速度要小,该速度的速度与$ p $相同,但没有捕食者。在$ p = 1 $时,前沿经历了默认过渡。前部的波动遵循kardar-parisi-zhang在此繁殖过渡的上方和下方缩放。

Chase-escape percolation is a variation of the standard epidemic spread models. In this model, each site can be in one of three states: unoccupied, occupied by a single prey, or occupied by a single predator. Prey particles spread to neighboring empty sites at rate $p$, and predator particles spread only to neighboring sites occupied by prey particles at rate $1$, killing the prey particle that existed at that site. It was found that the prey can survive with non-zero probability, if $p>p_c$ with $p_c<1$. Using Monte Carlo simulations on the square lattice, we estimate the value of $p_c = 0.49451 \pm 0.00001$, and the critical exponents are consistent with the undirected percolation universality class. We define a discrete-time parallel-update version of the model, which brings out the relation between chase-escape and undirected bond percolation. For all $p < p_c$ in $D$-dimensions, the number of predators in the absorbing configuration has a stretched-exponential distribution in contrast to the exponential distribution in the standard percolation theory. We also study the problem starting from the line initial condition with predator particles on all lattice points of the line $y=0$ and prey particles on the line $y=1$. In this case, for $p_c<p < 1$, the center of mass of the fluctuating prey and predator fronts travel at the same speed. This speed is strictly smaller than the speed of an Eden front with the same value of $p$, but with no predators. At $p=1$, the fronts undergo a depinning transition. The fluctuations of the front follow Kardar-Parisi-Zhang scaling both above and below this depinning transition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源