论文标题

PI-NET:用于多人单眼3D姿势估计的姿势相互作用网络

PI-Net: Pose Interacting Network for Multi-Person Monocular 3D Pose Estimation

论文作者

Guo, Wen, Corona, Enric, Moreno-Noguer, Francesc, Alameda-Pineda, Xavier

论文摘要

最近的文献非常令人满意地解决了单眼3D姿势估计任务。在这些研究中,通常将不同的人视为估计的独立姿势实例。但是,在许多日常情况下,人们正在互动,一个人的姿势取决于他/她的互动者的姿势。在本文中,我们研究了如何利用这种依赖性以增强3D单眼姿势估计的电流(可能是未来)深网。我们的姿势相互作用网络或PI-NET将可变数量的相互作用者的初始姿势估计输入到用于完善利益人姿势的经常性架构中。由于公共注释的多人3D人体姿势数据集的可用性有限,因此评估这种方法是具有挑战性的。我们在Mupots数据集中演示了我们方法的有效性,并在其上设置了新的最新技术。其他多人数据集(3D姿势地面真相)上的定性结果展示了拟议的Pi-net。 PI-NET在Pytorch中实施,该代码将在接受该论文后提供。

Recent literature addressed the monocular 3D pose estimation task very satisfactorily. In these studies, different persons are usually treated as independent pose instances to estimate. However, in many every-day situations, people are interacting, and the pose of an individual depends on the pose of his/her interactees. In this paper, we investigate how to exploit this dependency to enhance current - and possibly future - deep networks for 3D monocular pose estimation. Our pose interacting network, or PI-Net, inputs the initial pose estimates of a variable number of interactees into a recurrent architecture used to refine the pose of the person-of-interest. Evaluating such a method is challenging due to the limited availability of public annotated multi-person 3D human pose datasets. We demonstrate the effectiveness of our method in the MuPoTS dataset, setting the new state-of-the-art on it. Qualitative results on other multi-person datasets (for which 3D pose ground-truth is not available) showcase the proposed PI-Net. PI-Net is implemented in PyTorch and the code will be made available upon acceptance of the paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源