论文标题

通过大量轨迹数据挖掘卡车排队模式

Mining Truck Platooning Patterns Through Massive Trajectory Data

论文作者

Ma, Xiaolei, Huo, Enze, Yu, Haiyang, Li, Honghai

论文摘要

卡车排是指通过通信技术近距离驾驶的一系列卡车,它被认为是最可实施的连接和自动化车辆系统之一,可带来巨大的能源节省和安全性的改进。适当地计划排和评估卡车排的潜力对于卡车运输公司和运输当局至关重要。这项研究提出了一系列数据挖掘方法,以从巨大的轨迹学习自发卡车排队模式。开发了增强的地图匹配算法,以通过使用数字地图数据来识别卡车标题,然后使用自适应空间聚类算法来检测瞬时共同移动卡车套件。然后将这些集合聚合,以通过频繁的项目集挖掘以提高网络范围的最大排持续时间和大小,以提高计算效率。我们利用来自中国借用的卡车短暂系统收集的真实GPS数据,以评估排量性能并成功提取时空排量模式。结果表明,大约36%的自发卡车排,可以通过速度调整协调,而无需更改路线和时间表。这些排队卡车的平均排距离和持续时间比分别为9.6%和9.9%,导致总燃油消耗降低了2.8%。我们还区分了国家高速公路和行李箱道路的最佳排期和太空前进,并优先考虑卡车排的可能性很高。派生的结果是可重现的,为大型卡车排规划和路边基础设施构建提供了有用的政策含义和运营策略。

Truck platooning refers to a series of trucks driving in close proximity via communication technologies, and it is considered one of the most implementable systems of connected and automated vehicles, bringing huge energy savings and safety improvements. Properly planning platoons and evaluating the potential of truck platooning are crucial to trucking companies and transportation authorities. This study proposes a series of data mining approaches to learn spontaneous truck platooning patterns from massive trajectories. An enhanced map matching algorithm is developed to identify truck headings by using digital map data, followed by an adaptive spatial clustering algorithm to detect instantaneous co-moving truck sets. These sets are then aggregated to find the network-wide maximum platoon duration and size through frequent itemset mining for computational efficiency. We leverage real GPS data collected from truck fleeting systems in Liaoning Province, China, to evaluate platooning performance and successfully extract spatiotemporal platooning patterns. Results show that approximately 36% spontaneous truck platoons can be coordinated by speed adjustment without changing routes and schedules. The average platooning distance and duration ratios for these platooned trucks are 9.6% and 9.9%, respectively, leading to a 2.8% reduction in total fuel consumption. We also distinguish the optimal platooning periods and space headways for national freeways and trunk roads, and prioritize the road segments with high possibilities of truck platooning. The derived results are reproducible, providing useful policy implications and operational strategies for large-scale truck platoon planning and roadside infrastructure construction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源