论文标题

朝着硬件敏捷的凝视轨迹

Towards Hardware-Agnostic Gaze-Trackers

论文作者

Sharma, Jatin, Campbell, Jon, Ansell, Pete, Beavers, Jay, O'Dowd, Christopher

论文摘要

凝视跟踪是一种与计算机互动的新颖方式,该计算机允许新场景,例如使患有运动神经元残疾的人能够控制其计算机或医生与患者信息相互作用而无需触摸屏幕或键盘。此外,在互动游戏,用户体验研究,人类注意力分析和行为研究中,有凝视跟踪的新兴应用。准确的目光估计可能涉及考虑头置,头位,眼旋,距物体距离以及操作条件(例如照明,遮挡,背景噪声和用户的各种生物学方面)的距离。市售的凝视轨迹使用了通常由红外光源和相机组成的专业传感器组件。作为可访问性技术的凝视跟踪的普遍扩散,尤其是其负担能力,可靠性和易用性,面临着一些挑战。在本文中,我们试图通过开发硬件不可静止的凝视器来应对这些挑战。我们提出了一种深层神经网络体系结构,作为一种基于外观的方法,用于限制视线跟踪,该方法利用在所有现代计算设备中普通RGB相机无处不在的面部图像。我们的系统在GazeCapture数据集上实现了1.8073cm的误差,而没有任何校准或设备特定的微调。这项研究表明,由于深度中性网络的预测能力,任何计算机,平板电脑或手机都可以通过您的眼睛来控制的一天有望。

Gaze-tracking is a novel way of interacting with computers which allows new scenarios, such as enabling people with motor-neuron disabilities to control their computers or doctors to interact with patient information without touching screen or keyboard. Further, there are emerging applications of gaze-tracking in interactive gaming, user experience research, human attention analysis and behavioral studies. Accurate estimation of the gaze may involve accounting for head-pose, head-position, eye rotation, distance from the object as well as operating conditions such as illumination, occlusion, background noise and various biological aspects of the user. Commercially available gaze-trackers utilize specialized sensor assemblies that usually consist of an infrared light source and camera. There are several challenges in the universal proliferation of gaze-tracking as accessibility technologies, specifically its affordability, reliability, and ease-of-use. In this paper, we try to address these challenges through the development of a hardware-agnostic gaze-tracker. We present a deep neural network architecture as an appearance-based method for constrained gaze-tracking that utilizes facial imagery captured on an ordinary RGB camera ubiquitous in all modern computing devices. Our system achieved an error of 1.8073cm on GazeCapture dataset without any calibration or device specific fine-tuning. This research shows promise that one day soon any computer, tablet, or phone will be controllable using just your eyes due to the prediction capabilities of deep neutral networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源