论文标题
公平意识不可知论的联邦学习
Fairness-aware Agnostic Federated Learning
论文作者
论文摘要
Federated Learning是一个新兴框架,它通过在多个设备上分布的培训数据来构建集中的机器学习模型。以前的大多数有关联邦学习的作品都集中在隐私保护和降低沟通成本上。但是,如何在联合学习中实现公平性的探索且充满挑战,尤其是当测试数据分布与培训分布甚至未知时。在集中式模型上引入简单的公平约束无法在未知的测试数据上实现模型公平性。在本文中,我们开发了一个公平意识的不可知论联合学习框架(不可知论)来应对未知测试分布的挑战。我们使用内核重新拨打功能来分配损失功能和公平限制的每个培训样本的重新值。因此,由不可知论者构建的集中模型可以在未知的测试数据上获得高精度和公平性的保证。此外,构建的模型可以直接应用于本地站点,因为它可以保证在本地数据分布上公平。据我们所知,这是在联邦学习中获得公平性的第一项工作。两个真实数据集的实验结果证明了在数据偏移方案下的效用和公平性方面的有效性。
Federated learning is an emerging framework that builds centralized machine learning models with training data distributed across multiple devices. Most of the previous works about federated learning focus on the privacy protection and communication cost reduction. However, how to achieve fairness in federated learning is under-explored and challenging especially when testing data distribution is different from training distribution or even unknown. Introducing simple fairness constraints on the centralized model cannot achieve model fairness on unknown testing data. In this paper, we develop a fairness-aware agnostic federated learning framework (AgnosticFair) to deal with the challenge of unknown testing distribution. We use kernel reweighing functions to assign a reweighing value on each training sample in both loss function and fairness constraint. Therefore, the centralized model built from AgnosticFair can achieve high accuracy and fairness guarantee on unknown testing data. Moreover, the built model can be directly applied to local sites as it guarantees fairness on local data distributions. To our best knowledge, this is the first work to achieve fairness in federated learning. Experimental results on two real datasets demonstrate the effectiveness in terms of both utility and fairness under data shift scenarios.