论文标题
在多面体的骨架的超图连通性上
On the hypergraph connectivity of skeleta of polytopes
论文作者
论文摘要
我们表明,每$ d $二维的多层人物,其节点为$ k $ faces且其超计划为$(k+1)$ - polytope的面孔很强$(D-K)$(D-k)$ - VERTEX已连接,每个$ 0 $ 0 \ leq k \ leq k \ leq d-1 $ $。
We show that for every $d$-dimensional polytope, the hypergraph whose nodes are $k$-faces and whose hyperedges are $(k+1)$-faces of the polytope is strongly $(d-k)$-vertex connected, for each $0 \leq k \leq d- 1$.