论文标题

符号平行自适应重要性抽样,以进行概率计划分析

Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis

论文作者

Luo, Yicheng, Filieri, Antonio, Zhou, Yuan

论文摘要

概率软件分析旨在量化在执行不确定的传入数据或使用概率编程构造本身的程序处理过程中发生的目标事件的可能性。最近的技术将符号执行与模型计数或解决方案空间量化方法相结合,以获得对罕见目标事件的发生概率的准确估计,例如关键任务系统中的故障。但是,在分析具有高维和相关的多元输入分布的软件处理时,它们会面临几种可扩展性和适用性限制。在本文中,我们介绍了符号并行自适应重要性采样(Sympais),这是一种定制的新推理方法,用于分析从具有高维,相关输入分布的程序的符号执行中生成的路径条件。 Sympais结合了重要性采样和约束解决方案的结果,以产生一类广泛约束的满意度概率的准确估计,而这些约束无法通过当前的解决方案空间量化方法分析。与最先进的替代方案相比,我们证明了Sympais的一般性和性能。

Probabilistic software analysis aims at quantifying the probability of a target event occurring during the execution of a program processing uncertain incoming data or written itself using probabilistic programming constructs. Recent techniques combine symbolic execution with model counting or solution space quantification methods to obtain accurate estimates of the occurrence probability of rare target events, such as failures in a mission-critical system. However, they face several scalability and applicability limitations when analyzing software processing with high-dimensional and correlated multivariate input distributions. In this paper, we present SYMbolic Parallel Adaptive Importance Sampling (SYMPAIS), a new inference method tailored to analyze path conditions generated from the symbolic execution of programs with high-dimensional, correlated input distributions. SYMPAIS combines results from importance sampling and constraint solving to produce accurate estimates of the satisfaction probability for a broad class of constraints that cannot be analyzed by current solution space quantification methods. We demonstrate SYMPAIS's generality and performance compared with state-of-the-art alternatives on a set of problems from different application domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源