论文标题

降低订单剪切的有限元方法,用于几何参数化稳定和不稳定的Navier-Stokes问题

A Reduced Order Cut Finite Element method for geometrically parameterized steady and unsteady Navier-Stokes problems

论文作者

Karatzas, Efthymios N., Nonino, Monica, Ballarin, Francesco, Rozza, Gianluigi

论文摘要

这项工作着重于稳定且不稳定的Navier-Stokes方程,以减少的订单建模框架。提出的方法基于一个级别的几何描述中适当的正交分解,并使用未固定的网格有限元法离散了感兴趣的问题。我们构建并研究了一个统一和几何独立的减少基础,这种基础克服了过去的许多障碍和并发症,这种障碍和并发症可能在发生几何形变时就会发生。通过使用独立的几何减少基础,我们能够避免重新构造和转换以参考配置,并且能够处理复杂的几何形状。在固定的扩展背景几何形状和降低的订单技术中,固定背景网格的这种组合在许多工业和工程应用中似乎有益且有利,过去无法有效解决。

This work focuses on steady and unsteady Navier-Stokes equations in a reduced order modeling framework. The methodology proposed is based on a Proper Orthogonal Decomposition within a levelset geometry description and the problems of interest are discretized with an unfitted mesh Finite Element Method. We construct and investigate a unified and geometry independent reduced basis which overcomes many barriers and complications of the past, that may occur whenever geometrical morphings are taking place. By employing a geometry independent reduced basis, we are able to avoid remeshing and transformation to reference configurations, and we are able to handle complex geometries. This combination of a fixed background mesh in a fixed extended background geometry with reduced order techniques appears beneficial and advantageous in many industrial and engineering applications, which could not be resolved efficiently in the past.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源