论文标题

在Hodge分解,有效的粘性通量和可压缩的Navier-Stokes

On Hodge decomposition, effective viscous flux and compressible Navier-Stokes

论文作者

Frid, Hermano, Marroquin, Daniel, Nariyoshi, João F. C.

论文摘要

自从Serre,Hoff,Vaĭgant-Kazhikhikhov,Lions and Feireisl等开创性的作品以来,这是众所周知的。在本文中,我们进一步探讨了牛顿力量的Hodge分解与其梯度部分的正规化特性之间的联系,通过解决全球存在的弱解决方案存在的问题,用于可压缩的Navier-Stokes方程,这两种粘度都取决于两个粘度,具体取决于其密度的空间易变。

It has been known, since the pioneering works by Serre, Hoff, Vaĭgant-Kazhikhov, Lions and Feireisl, among others, the regularizing properties of the effective viscous flux and its characterization as the function whose gradient is the gradient part in the Hodge decomposition of the Newtonian force of the fluid, when the shear viscosity of the fluid is constant. In this article, we explore further the connection between the Hodge decomposition of the Newtonian force and the regularizing properties of its gradient part, by addressing the problem of the global existence of weak solutions for compressible Navier-Stokes equations with both viscosities depending on a spatial mollification of the density.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源