论文标题

基于替代物的最佳可能性功能,用于大气入口保护材料中催化重组的贝叶斯校准

A surrogate-based optimal likelihood function for the Bayesian calibration of catalytic recombination in atmospheric entry protection materials

论文作者

del Val, Anabel, Maître, Olivier P. Le, Chazot, Olivier, Magin, Thierry E., Congedo, Pietro M.

论文摘要

这项工作涉及从血浆风洞实验的催化重组参数的推断,以重复使用的热保护材料。影响此类材料性能的关键因素之一是对车辆表面放热重组反应的热通量的贡献。这项工作的主要目的是开发专用的贝叶斯框架,该贝叶斯框架使我们能够将不确定的测量结果与取决于催化参数值的模型预测进行比较。我们的框架说明了模型定义中涉及的不确定性,并将所有测量变量与各自的不确定性结合在一起。用于估计的物理模型由沿停滞线的1D边界层求解器组成。表面质量平衡中包含的化学生产项取决于催化重组效率。由于可以测量或已知模拟反应边界层所需的所有不同数量(例如入口边界处的流动焓),因此我们提出了一个基于可用实验数据的可能性函数的构建,以确定其最可能的值,以确定其最可能的值。此过程避免了对滋扰数量的任何先验估计的需要,即边界边缘焓,壁温,静态和动态压力,这将需要使用非常宽的先验。我们将实验数据的最佳可能性用替代模型代替,以使推理程序更快,更健壮。我们表明,所得的贝叶斯公式产生了催化参数的有意义,准确的后验分布,而相对于以前的工作,催化参数的标准偏差超过20%。我们还研究了实验程序扩展的含义。

This work deals with the inference of catalytic recombination parameters from plasma wind tunnel experiments for reusable thermal protection materials. One of the critical factors affecting the performance of such materials is the contribution to the heat flux of the exothermic recombination reactions at the vehicle surface. The main objective of this work is to develop a dedicated Bayesian framework that allows us to compare uncertain measurements with model predictions which depend on the catalytic parameter values. Our framework accounts for uncertainties involved in the model definition and incorporates all measured variables with their respective uncertainties. The physical model used for the estimation consists of a 1D boundary layer solver along the stagnation line. The chemical production term included in the surface mass balance depends on the catalytic recombination efficiency. As not all the different quantities needed to simulate a reacting boundary layer can be measured or known (such as the flow enthalpy at the inlet boundary), we propose an optimization procedure built on the construction of the likelihood function to determine their most likely values based on the available experimental data. This procedure avoids the need to introduce any a priori estimates on the nuisance quantities, namely, the boundary layer edge enthalpy, wall temperatures, static and dynamic pressures, which would entail the use of very wide priors. We substitute the optimal likelihood of the experimental data with a surrogate model to make the inference procedure both faster and more robust. We show that the resulting Bayesian formulation yields meaningful and accurate posterior distributions of the catalytic parameters with a reduction of more than 20% of the standard deviation with respect to previous works. We also study the implications of an extension of the experimental procedure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源