论文标题
可压缩流的正则化模型的能量,动量和角动量保护方案
An energy, momentum and angular momentum conserving scheme for a regularization model of incompressible flow
论文作者
论文摘要
我们引入了一种新的正规化模型,用于不可压缩的流体流,这是我们称为Emac-Reg的Navier-Stokes方程(NSE)的Emac公式的正则化。事实证明,emac(能量,动量和角动量保护)的配方被证明是一种有用的配方,因为即使差异约束只能弱执行,它也可以保留能量,动量和角动量。但是,它仍然是一种NSE公式,因此无法在没有非常细的网格的情况下解决较高的雷诺数流。通过仔细将正则化引入EMAC公式,我们创建了一个更适合更粗的网格计算的模型,但仍然可以保守与EMAC相同的数量,即能量,动量和角动量。我们表明,当用有限元空间离散化半磨损时,Emac-Reg是良好的且最佳准确的。提供数值结果表明Emac-Reg是一个强大的粗网格模型。
We introduce a new regularization model for incompressible fluid flow, which is a regularization of the EMAC formulation of the Navier-Stokes equations (NSE) that we call EMAC-Reg. The EMAC (energy, momentum, and angular momentum conserving) formulation has proved to be a useful formulation because it conserves energy, momentum and angular momentum even when the divergence constraint is only weakly enforced. However it is still a NSE formulation and so cannot resolve higher Reynolds number flows without very fine meshes. By carefully introducing regularization into the EMAC formulation, we create a model more suitable for coarser mesh computations but that still conserves the same quantities as EMAC, i.e., energy, momentum, and angular momentum. We show that EMAC-Reg, when semi-discretized with a finite element spatial discretization is well-posed and optimally accurate. Numerical results are provided that show EMAC-Reg is a robust coarse mesh model.