论文标题
了解纳米力学谐振传感器中的基本权衡
Understanding Fundamental Tradeoffs in Nanomechanical Resonant Sensors
论文作者
论文摘要
纳米力学谐振器在多种应用中用作高性能检测器,例如质谱和原子力显微镜。纳米力学谐振传感器研究的最初重点是提高对单个分子,原子及其他分子水平的敏感性。另一方面,在某些应用程序中,检测速度至关重要,促使最近的作品强调以改善时间分辨率的传感方案。我们首先开发了一个通用建模框架,其中包含目前正在使用的所有共振器跟踪方案,并扩展了最新的先前工作。然后,我们探讨了三个共振传感器体系结构的准确性和速度之间的基本权衡,即无反馈的开环方法,基于正面反馈的自我维持振荡器以及基于负面反馈的频率锁定环路方案。我们以统一的方式对其进行了相对分析,阐明了文献中似乎存在的一些误解,并揭示了它们的速度与准确性特征。
Nanomechanical resonators are used as high performance detectors in a variety of applications such as mass spectrometry and atomic force microscopy. Initial emphasis in nanomechanical resonant sensor research was on increasing the sensitivity to the level of a single molecule, atom and beyond. On the other hand, there are applications where the speed of detection is crucial, prompting recent works that emphasize sensing schemes with improved time resolution. We first develop a general modeling framework encompassing all resonator tracking schemes currently in use, by extending recent previous work. We then explore the fundamental trade-offs between accuracy and speed in three resonant sensor architectures, namely the feedback-free open-loop approach, positive-feedback based self-sustaining oscillator, and negative-feedback based frequency-locked loop scheme. We comparatively analyze them in a unified manner, clarify some misconceptions that seem to exist in the literature, and unravel their speed versus accuracy characteristics.