论文标题

重新考虑用于血管分割的多尺度特征的提取和相互作用

Rethinking the Extraction and Interaction of Multi-Scale Features for Vessel Segmentation

论文作者

Wu, Yicheng, Pan, Chengwei, Wang, Shuqi, Zhang, Ming, Xia, Yong, Yu, Yizhou

论文摘要

分析血管的形态属性在许多心血管和眼科疾病的计算机辅助诊断中起着至关重要的作用。尽管经过广泛的研究,但血管,尤其是薄血管和毛细血管的分割,主要是由于局部和全球特征之间缺乏有效的相互作用,仍然具有挑战性。在本文中,我们提出了一个名为PC-NET的新型深度学习模型,分别在2D底面图像和3D计算机层析成像血管造影(CTA)扫描中分段视网膜血管和主要动脉。在PC-NET中,金字塔挤压和兴奋(PSE)模块向每个卷积块引入空间信息,增强其提取更有效的多尺度特征的能力,并取代了粗到细节(CF)模块,取代了传统的解码器,以增强薄容器的细节,并再次处理硬到分类的像素。我们在数字视网膜图像上评估了用于血管提取(驱动)数据库和内部3D主要动脉(3MA)数据库的PC-NET。我们的结果不仅证明了所提出的PSE模块和CF模块的有效性,而且还表明我们提出的PC-NET在视网膜血管分割(AUC:98.31%)和主要动脉(AUC:98.35%)中分别在两个数据库上设置了新的最新技术。

Analyzing the morphological attributes of blood vessels plays a critical role in the computer-aided diagnosis of many cardiovascular and ophthalmologic diseases. Although being extensively studied, segmentation of blood vessels, particularly thin vessels and capillaries, remains challenging mainly due to the lack of an effective interaction between local and global features. In this paper, we propose a novel deep learning model called PC-Net to segment retinal vessels and major arteries in 2D fundus image and 3D computed tomography angiography (CTA) scans, respectively. In PC-Net, the pyramid squeeze-and-excitation (PSE) module introduces spatial information to each convolutional block, boosting its ability to extract more effective multi-scale features, and the coarse-to-fine (CF) module replaces the conventional decoder to enhance the details of thin vessels and process hard-to-classify pixels again. We evaluated our PC-Net on the Digital Retinal Images for Vessel Extraction (DRIVE) database and an in-house 3D major artery (3MA) database against several recent methods. Our results not only demonstrate the effectiveness of the proposed PSE module and CF module, but also suggest that our proposed PC-Net sets new state of the art in the segmentation of retinal vessels (AUC: 98.31%) and major arteries (AUC: 98.35%) on both databases, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源