论文标题

神经机器翻译的不确定性感知语义增强

Uncertainty-Aware Semantic Augmentation for Neural Machine Translation

论文作者

Wei, Xiangpeng, Yu, Heng, Hu, Yue, Weng, Rongxiang, Xing, Luxi, Luo, Weihua

论文摘要

作为序列到序列的一项任务,神经机器翻译(NMT)自然包含固有的不确定性,其中一种语言中的单个句子在另一种语言中具有多个有效的对应物。但是,NMT的主要方法只能从平行语料库中观察其中之一进行模型培训,但必须在推断时处理相同含义的适当变化。这导致训练和推理阶段之间的数据分布差异。为了解决这个问题,我们提出了不确定性感知的语义扩展,该语义扩展明确地捕获了多个语义上等效源句子之间的通用语义信息,并使用此信息来增强隐藏的表示,以获得更好的翻译。关于各种翻译任务的广泛实验表明,我们的方法极大地胜过强大的基准和现有方法。

As a sequence-to-sequence generation task, neural machine translation (NMT) naturally contains intrinsic uncertainty, where a single sentence in one language has multiple valid counterparts in the other. However, the dominant methods for NMT only observe one of them from the parallel corpora for the model training but have to deal with adequate variations under the same meaning at inference. This leads to a discrepancy of the data distribution between the training and the inference phases. To address this problem, we propose uncertainty-aware semantic augmentation, which explicitly captures the universal semantic information among multiple semantically-equivalent source sentences and enhances the hidden representations with this information for better translations. Extensive experiments on various translation tasks reveal that our approach significantly outperforms the strong baselines and the existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源