论文标题
文档级神经机器翻译的动态上下文选择通过增强学习
Dynamic Context Selection for Document-level Neural Machine Translation via Reinforcement Learning
论文作者
论文摘要
文档级神经机器翻译产生了有吸引力的改进。但是,大多数现有方法在固定范围中大致使用所有上下文句子。他们忽略了不同源句子需要不同大小上下文的事实。为了解决这个问题,我们提出了一种有效的方法来选择动态上下文,以便文档级翻译模型可以利用更有用的选择上下文句子来产生更好的翻译。具体来说,我们引入了一个独立于翻译模块的选择模块,以评分每个候选上下文句子。然后,我们提出了两种策略,以明确选择可变数量的上下文句子并将其馈入翻译模块。我们通过强化学习端到端训练两个模块。提出了一种新颖的奖励,以鼓励选择和利用动态上下文句子。实验表明,我们的方法可以为不同的源句子选择自适应上下文句子,并显着提高文档级翻译方法的性能。
Document-level neural machine translation has yielded attractive improvements. However, majority of existing methods roughly use all context sentences in a fixed scope. They neglect the fact that different source sentences need different sizes of context. To address this problem, we propose an effective approach to select dynamic context so that the document-level translation model can utilize the more useful selected context sentences to produce better translations. Specifically, we introduce a selection module that is independent of the translation module to score each candidate context sentence. Then, we propose two strategies to explicitly select a variable number of context sentences and feed them into the translation module. We train the two modules end-to-end via reinforcement learning. A novel reward is proposed to encourage the selection and utilization of dynamic context sentences. Experiments demonstrate that our approach can select adaptive context sentences for different source sentences, and significantly improves the performance of document-level translation methods.