论文标题

在渐近平坦的时间上,Strauss型波系统解决方案的寿命

Lifespan of solutions to the Strauss type wave system on asymptotically flat space-times

论文作者

Dai, Wei, Fang, Daoyuan, Wang, Chengbo

论文摘要

通过假设$(1+3)$ - 尺寸渐近时空的某些局部能量估计,我们研究了\ emph {strauss} type Wave系统的存在部分。首先,我们给出了一种与出现在\ cite {MR2944027}中的局部能量规范有关的时空估计。这些估计值可用于证明一系列加权\ emph {strichartz}和\ emph {kss}类型估计值,用于渐近平坦的时空上的波方程。然后,当非线性指数$ p $和$ q \ ge 2 $时,我们应用时空估算以获得寿命的下限。特别是,我们对亚临界案例的约束通常是尖锐的,我们将已知的$(p,q)$扩展到全球解决方案。此外,当$ p,q> 2 $时,不需要对初始数据紧凑。

By assuming certain local energy estimates on $(1+3)$-dimensional asymptotically flat space-time, we study the existence portion of the \emph{Strauss} type wave system. Firstly we give a kind of space-time estimates which are related to the local energy norm that appeared in \cite{MR2944027}. These estimates can be used to prove a series of weighted \emph{Strichartz} and \emph{KSS} type estimates, for wave equations on asymptotically flat space-time. Then we apply the space-time estimates to obtain the lower bound of the lifespan when the nonlinear exponents $p$ and $q\ge 2$. In particular, our bound for the subcritical case is sharp in general and we extend the known region of $(p,q)$ to admit global solutions. In addition, the initial data are not required to be compactly supported, when $p, q>2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源