论文标题
机器学习启用了科学代码的可扩展性能预测
Machine Learning Enabled Scalable Performance Prediction of Scientific Codes
论文作者
论文摘要
我们使用性能预测工具包(PPT)的管道(AMM)介绍了分析存储模型。 PPT-AMMP将高级源代码和硬件体系结构参数作为输入,可预测该代码在目标硬件平台上的运行时间,该代码在输入参数中定义。 PPT-AMMP将代码转换为(独立于架构的)中间表示,然后(i)分析代码的基本块结构,(ii)处理与架构无关的虚拟内存访问模式,用于为每个基本块构建内存重复使用距离距离模型,(iii)运行详细的基本块级别模拟级别的模拟级别的模拟管道。 PPT-AMMP使用机器学习和回归技术来基于输入代码的小实例来构建预测模型,然后集成到Simian PDES引擎上运行的PPT的高阶离散事实模拟模型中。我们在四个标准的计算物理基准上验证了PPT-AMMP,最后提出了硬件参数灵敏度分析的用例,以识别不同代码输入上的瓶颈硬件资源。我们进一步扩展了PPT-AMMP,以预测科学应用的性能(辐射传输),SNAP。我们分析了多变量回归模型的应用,这些模型可以准确预测重复使用轮廓和基本块计数。与实际时间相比,预测的快照时间是准确的。
We present the Analytical Memory Model with Pipelines (AMMP) of the Performance Prediction Toolkit (PPT). PPT-AMMP takes high-level source code and hardware architecture parameters as input, predicts runtime of that code on the target hardware platform, which is defined in the input parameters. PPT-AMMP transforms the code to an (architecture-independent) intermediate representation, then (i) analyzes the basic block structure of the code, (ii) processes architecture-independent virtual memory access patterns that it uses to build memory reuse distance distribution models for each basic block, (iii) runs detailed basic-block level simulations to determine hardware pipeline usage. PPT-AMMP uses machine learning and regression techniques to build the prediction models based on small instances of the input code, then integrates into a higher-order discrete-event simulation model of PPT running on Simian PDES engine. We validate PPT-AMMP on four standard computational physics benchmarks, finally present a use case of hardware parameter sensitivity analysis to identify bottleneck hardware resources on different code inputs. We further extend PPT-AMMP to predict the performance of scientific application (radiation transport), SNAP. We analyze the application of multi-variate regression models that accurately predict the reuse profiles and the basic block counts. The predicted runtimes of SNAP when compared to that of actual times are accurate.