论文标题

机器学习启用了科学代码的可扩展性能预测

Machine Learning Enabled Scalable Performance Prediction of Scientific Codes

论文作者

Chennupati, Gopinath, Santhi, Nandakishore, Romero, Phill, Eidenbenz, Stephan

论文摘要

我们使用性能预测工具包(PPT)的管道(AMM)介绍了分析存储模型。 PPT-AMMP将高级源代码和硬件体系结构参数作为输入,可预测该代码在目标硬件平台上的运行时间,该代码在输入参数中定义。 PPT-AMMP将代码转换为(独立于架构的)中间表示,然后(i)分析代码的基本块结构,(ii)处理与架构无关的虚拟内存访问模式,用于为每个基本块构建内存重复使用距离距离模型,(iii)运行详细的基本块级别模拟级别的模拟级别的模拟管道。 PPT-AMMP使用机器学习和回归技术来基于输入代码的小实例来构建预测模型,然后集成到Simian PDES引擎上运行的PPT的高阶离散事实模拟模型中。我们在四个标准的计算物理基准上验证了PPT-AMMP,最后提出了硬件参数灵敏度分析的用例,以识别不同代码输入上的瓶颈硬件资源。我们进一步扩展了PPT-AMMP,以预测科学应用的性能(辐射传输),SNAP。我们分析了多变量回归模型的应用,这些模型可以准确预测重复使用轮廓和基本块计数。与实际时间相比,预测的快照时间是准确的。

We present the Analytical Memory Model with Pipelines (AMMP) of the Performance Prediction Toolkit (PPT). PPT-AMMP takes high-level source code and hardware architecture parameters as input, predicts runtime of that code on the target hardware platform, which is defined in the input parameters. PPT-AMMP transforms the code to an (architecture-independent) intermediate representation, then (i) analyzes the basic block structure of the code, (ii) processes architecture-independent virtual memory access patterns that it uses to build memory reuse distance distribution models for each basic block, (iii) runs detailed basic-block level simulations to determine hardware pipeline usage. PPT-AMMP uses machine learning and regression techniques to build the prediction models based on small instances of the input code, then integrates into a higher-order discrete-event simulation model of PPT running on Simian PDES engine. We validate PPT-AMMP on four standard computational physics benchmarks, finally present a use case of hardware parameter sensitivity analysis to identify bottleneck hardware resources on different code inputs. We further extend PPT-AMMP to predict the performance of scientific application (radiation transport), SNAP. We analyze the application of multi-variate regression models that accurately predict the reuse profiles and the basic block counts. The predicted runtimes of SNAP when compared to that of actual times are accurate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源