论文标题

高斯MRF协方差建模,用于有效的黑盒对抗攻击

Gaussian MRF Covariance Modeling for Efficient Black-Box Adversarial Attacks

论文作者

Sahu, Anit Kumar, Shukla, Satya Narayan, Kolter, J. Zico

论文摘要

我们研究了在黑框设置中生成对抗性示例的问题,在黑框设置中,我们只能访问零订单Oracle,从而为我们提供损失函数评估。尽管在先前的工作中已经研究了此设置,但使用零订单优化的大多数过去方法隐含地假设相对于输入图像的损耗函数的梯度为\ emph {nosph {nosponruction}。在这项工作中,我们表明实际上存在这些梯度中存在实质性相关性,我们建议通过高斯马尔可夫随机场(GMRF)捕获这些相关性。鉴于MRF的显式协方差结构的存在性,我们表明可以使用快速傅立叶变换(FFT)有效地表示协方差结构,以及低级别更新以在此模型下执行精确的后验估计。我们使用这种建模技术来查找快速的一步对手攻击,类似于快速梯度标志方法的黑盒版本〜(FGSM),并表明该方法使用的查询较少,并且比目前的现状更高的攻击成功率。我们还强调了此梯度建模设置的一般适用性。

We study the problem of generating adversarial examples in a black-box setting, where we only have access to a zeroth order oracle, providing us with loss function evaluations. Although this setting has been investigated in previous work, most past approaches using zeroth order optimization implicitly assume that the gradients of the loss function with respect to the input images are \emph{unstructured}. In this work, we show that in fact substantial correlations exist within these gradients, and we propose to capture these correlations via a Gaussian Markov random field (GMRF). Given the intractability of the explicit covariance structure of the MRF, we show that the covariance structure can be efficiently represented using the Fast Fourier Transform (FFT), along with low-rank updates to perform exact posterior estimation under this model. We use this modeling technique to find fast one-step adversarial attacks, akin to a black-box version of the Fast Gradient Sign Method~(FGSM), and show that the method uses fewer queries and achieves higher attack success rates than the current state of the art. We also highlight the general applicability of this gradient modeling setup.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源