论文标题
纳米光活性的统计标志。 ii。 NGTS观察到的耀斑恒星周期性亮丽的纳米表解释
Statistical Signatures of Nanoflare Activity. II. A Nanoflare Explanation for Periodic Brightenings in Flare Stars observed by NGTS
论文作者
论文摘要
几项研究记录了DME火炬星和其他恒星来源的时间序列的周期性和准周期信号。这种周期性信号在静态阶段(即没有更大尺寸的微叶片或耀斑活动)中观察到,范围从$ 1-1000 $秒开始,因此暂时与无处不在的$ p $ mmode振荡偶然链接。因此,对观察到的周期性的大多数解释都是根据磁烟动力波行为构建的。但是,我们建议一系列基于幂律分布的连续纳米流量可以在相关时间序列中提供相似的周期信号。调整太阳纳米光线信号的先前统计分析,我们找到了嵌入M型恒星恒星光弯曲噪声包膜中的恒星纳米光线信号的第一个统计证据。我们采用了下一代公交调查(NGTS)收集的数据,我们找到了出色的纳米洛尔拉(Nanoflare)活动的证据,证明了一个耀斑的幂律指数$ 3.25 \ pm 0.20 $,以及$ 200 \ pm 100 $ s的衰减时间表。我们还发现,尽管纯粹由冲动的签名组成,尽管合成时间序列与DME耀斑灯光曲面的观察结果一致,能够在与$ p $ mmode信号相同的频率范围内产生准周期信号。传统上,现象认为波行行为的结果可以用许多高频但离散的纳米洛尔能量事件来描述。这种新的物理解释通过将观察到的周期性信号与给定的纳米模型条件联系起来,提出了一种新颖的诊断能力。
Several studies have documented periodic and quasi-periodic signals from the time series of dMe flare stars and other stellar sources. Such periodic signals, observed within quiescent phases (i.e., devoid of larger-scale microflare or flare activity), range in period from $1-1000$ seconds and hence have been tentatively linked to ubiquitous $p$-mode oscillations generated in the convective layers of the star. As such, most interpretations for the observed periodicities have been framed in terms of magneto-hydrodynamic wave behavior. However, we propose that a series of continuous nanoflares, based upon a power-law distribution, can provide a similar periodic signal in the associated time series. Adapting previous statistical analyses of solar nanoflare signals, we find the first statistical evidence for stellar nanoflare signals embedded within the noise envelope of M-type stellar lightcurves. Employing data collected by the Next Generation Transit Survey (NGTS), we find evidence for stellar nanoflare activity demonstrating a flaring power-law index of $3.25 \pm 0.20 $, alongside a decay timescale of $200 \pm 100$ s. We also find that synthetic time series, consistent with the observations of dMe flare star lightcurves, are capable of producing quasi-periodic signals in the same frequency range as $p$-mode signals, despite being purely comprised of impulsive signatures. Phenomena traditionally considered a consequence of wave behaviour may be described by a number of high frequency but discrete nanoflare energy events. This new physical interpretation presents a novel diagnostic capability, by linking observed periodic signals to given nanoflare model conditions.