论文标题

在线和无分销的鲁棒性:Huber污染的回归和上下文强盗

Online and Distribution-Free Robustness: Regression and Contextual Bandits with Huber Contamination

论文作者

Chen, Sitan, Koehler, Frederic, Moitra, Ankur, Yau, Morris

论文摘要

在这项工作中,我们从对抗性鲁棒性的角度重新审视了两个经典的高维在线学习问题,即线性回归和上下文强盗。算法鲁棒统计的现有作品做出了强大的分布假设,以确保输入数据均匀分布或来自一个不错的生成模型。即使没有分配假设,我们是否可以将我们被要求解决的任务序列是适应性和对抗性的,即使没有分配假设,也可以实现强大的鲁棒性吗? 我们以线性回归和上下文匪徒的肯定回答这个问题。实际上,我们的算法在常规方法失败的情况下成功。特别是,我们表现出强大的针对Huber回归的下限,更通常是任何凸M-静态器。我们的方法是基于一种新颖的交替最小化方案,该方案将普通最小二乘与简单的凸面程序交织在一起,该程序在光谱约束下发现分布的最佳重新重量。我们的结果基本上获得了对污染级别$η$的最佳依赖性,达到最佳分解点,并且自然适用于无限的维度设置,其中特征向量通过内核图隐含地表示。

In this work we revisit two classic high-dimensional online learning problems, namely linear regression and contextual bandits, from the perspective of adversarial robustness. Existing works in algorithmic robust statistics make strong distributional assumptions that ensure that the input data is evenly spread out or comes from a nice generative model. Is it possible to achieve strong robustness guarantees even without distributional assumptions altogether, where the sequence of tasks we are asked to solve is adaptively and adversarially chosen? We answer this question in the affirmative for both linear regression and contextual bandits. In fact our algorithms succeed where conventional methods fail. In particular we show strong lower bounds against Huber regression and more generally any convex M-estimator. Our approach is based on a novel alternating minimization scheme that interleaves ordinary least-squares with a simple convex program that finds the optimal reweighting of the distribution under a spectral constraint. Our results obtain essentially optimal dependence on the contamination level $η$, reach the optimal breakdown point, and naturally apply to infinite dimensional settings where the feature vectors are represented implicitly via a kernel map.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源