论文标题
奥林匹克斯:嘈杂优化和实验计划的基准测试框架
Olympus: a benchmarking framework for noisy optimization and experiment planning
论文作者
论文摘要
在科学,工程和经济学之间遇到的研究挑战通常可以作为优化任务提出。在化学和材料科学中,实验室数字化和自动化的最新增长引发了人们对优化引导的自主发现和闭环实验的兴趣。可以在完全自主的研究平台中采用基于现成的优化算法的实验计划策略,以实现所需的实验目标,并使用最少的试验数量。但是,最适合科学发现任务的实验规划策略是先验未知的,而对不同策略的严格比较是高度时间和资源要求。由于优化算法通常在低维合成功能上进行基准测试,因此尚不清楚它们的性能如何转化为化学和材料科学中遇到的嘈杂,高维实验任务。我们介绍了Olympus,这是一个软件包,该软件包提供了一个一致且易于使用的框架,用于根据概率深度学习模型对现实实验进行基准优化算法。 Olympus包括来自化学和材料科学的实验得出的基准集,以及一套实验计划策略,可以通过用户友好的Python界面轻松访问。此外,Olympus促进了自定义算法和用户定义的数据集的集成,测试和共享。简而
Research challenges encountered across science, engineering, and economics can frequently be formulated as optimization tasks. In chemistry and materials science, recent growth in laboratory digitization and automation has sparked interest in optimization-guided autonomous discovery and closed-loop experimentation. Experiment planning strategies based on off-the-shelf optimization algorithms can be employed in fully autonomous research platforms to achieve desired experimentation goals with the minimum number of trials. However, the experiment planning strategy that is most suitable to a scientific discovery task is a priori unknown while rigorous comparisons of different strategies are highly time and resource demanding. As optimization algorithms are typically benchmarked on low-dimensional synthetic functions, it is unclear how their performance would translate to noisy, higher-dimensional experimental tasks encountered in chemistry and materials science. We introduce Olympus, a software package that provides a consistent and easy-to-use framework for benchmarking optimization algorithms against realistic experiments emulated via probabilistic deep-learning models. Olympus includes a collection of experimentally derived benchmark sets from chemistry and materials science and a suite of experiment planning strategies that can be easily accessed via a user-friendly python interface. Furthermore, Olympus facilitates the integration, testing, and sharing of custom algorithms and user-defined datasets. In brief, Olympus mitigates the barriers associated with benchmarking optimization algorithms on realistic experimental scenarios, promoting data sharing and the creation of a standard framework for evaluating the performance of experiment planning strategies