论文标题
3D对象检测并构成带有局部表面嵌入的颜色图像中看不见的对象的估计
3D Object Detection and Pose Estimation of Unseen Objects in Color Images with Local Surface Embeddings
论文作者
论文摘要
我们提出了一种方法,用于检测和估计图像中对象的3D姿势,该对象仅需要一个不介绍的CAD模型,而没有用于新对象的训练阶段。我们的方法结合了深度学习和3D几何形状:它依靠局部3D几何形状的嵌入将CAD模型与输入图像匹配。对于对象表面的点,可以直接从CAD模型中计算此嵌入。对于图像位置,我们学会从图像本身预测它。这建立了CAD模型上的3D点与输入图像的2D位置之间的对应关系。但是,其中许多对应关系模棱两可,因为许多点可能具有相似的局部几何形状。我们表明,我们可以使用类别不稳定的方式使用mask-rcNN来检测新对象而无需重新训练,从而大大限制了可能的对应关系的数量。然后,我们可以使用像Ransac-like算法从这些判别对应关系中稳健地估计3D姿势。我们通过使用少量对象来学习嵌入并在其他对象上测试嵌入方式,从而证明了这种方法的性能。我们的实验表明,我们的方法是在标准杆或更好的方法上。
We present an approach for detecting and estimating the 3D poses of objects in images that requires only an untextured CAD model and no training phase for new objects. Our approach combines Deep Learning and 3D geometry: It relies on an embedding of local 3D geometry to match the CAD models to the input images. For points at the surface of objects, this embedding can be computed directly from the CAD model; for image locations, we learn to predict it from the image itself. This establishes correspondences between 3D points on the CAD model and 2D locations of the input images. However, many of these correspondences are ambiguous as many points may have similar local geometries. We show that we can use Mask-RCNN in a class-agnostic way to detect the new objects without retraining and thus drastically limit the number of possible correspondences. We can then robustly estimate a 3D pose from these discriminative correspondences using a RANSAC- like algorithm. We demonstrate the performance of this approach on the T-LESS dataset, by using a small number of objects to learn the embedding and testing it on the other objects. Our experiments show that our method is on par or better than previous methods.