论文标题
MIA-原位:一个预测治疗反应的深度学习框架
MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response
论文作者
论文摘要
预测临床结果非常重要,但具有挑战性。为寻求与治疗反应或/和患者生存相关的重要生物标志物的研究工作已得到报酬。但是,这些生物标志物通常是昂贵且侵入性的,并且可能对新疗法持不同因素。另一方面,在临床实践中不断生成多模式,异质,未对准的时间数据。本文旨在采用一种统一的深度学习方法来预测患者的预后和治疗反应,并具有易于访问的数据,例如X光片,实验室和临床信息。先前的艺术专注于建模单个数据模式,或忽略时间变化。重要的是,临床时间序列在实践中是异步的,即以不规则的间隔记录。在这项研究中,我们将预后建模形式化为多模式异步时间序列分类任务,并提出了一个MIA-验证框架,并具有测量,干预和评估(MIA)信息以预测治疗反应,其中开发了一个简单的时间关注(SIMTA)模块以处理异步时间序列。合成数据集的实验验证了SIMTA的超级验证,而不是基于RNN的方法。此外,我们在抗PD-1免疫疗法下,在内部的,无小细胞肺癌患者的内部回顾性数据集上实验了提出的方法。提出的方法在预测免疫疗法反应方面取得了有希望的表现。值得注意的是,我们的预测模型可以在长期生存方面进一步对低风险和高危患者进行分层。
Predicting clinical outcome is remarkably important but challenging. Research efforts have been paid on seeking significant biomarkers associated with the therapy response or/and patient survival. However, these biomarkers are generally costly and invasive, and possibly dissatifactory for novel therapy. On the other hand, multi-modal, heterogeneous, unaligned temporal data is continuously generated in clinical practice. This paper aims at a unified deep learning approach to predict patient prognosis and therapy response, with easily accessible data, e.g., radiographics, laboratory and clinical information. Prior arts focus on modeling single data modality, or ignore the temporal changes. Importantly, the clinical time series is asynchronous in practice, i.e., recorded with irregular intervals. In this study, we formalize the prognosis modeling as a multi-modal asynchronous time series classification task, and propose a MIA-Prognosis framework with Measurement, Intervention and Assessment (MIA) information to predict therapy response, where a Simple Temporal Attention (SimTA) module is developed to process the asynchronous time series. Experiments on synthetic dataset validate the superiory of SimTA over standard RNN-based approaches. Furthermore, we experiment the proposed method on an in-house, retrospective dataset of real-world non-small cell lung cancer patients under anti-PD-1 immunotherapy. The proposed method achieves promising performance on predicting the immunotherapy response. Notably, our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.