论文标题

复杂信息动态的统计物理

Statistical physics of complex information dynamics

论文作者

Ghavasieh, Arsham, Nicolini, Carlo, De Domenico, Manlio

论文摘要

复杂系统交换信息的组成部分正常运行。它们的信号传导动力通常会导致出现新兴现象,例如相变和集体行为。尽管信息交换已通过不同的扩散过程(例如连续的时间扩散,随机步行,同步和共识)广泛建模,但在复杂网络之上,这是一个统一且具有物理基础的框架,以研究信息动态并获得有关微观相互作用的宏观效应的见解,但仍在忽略我们。在本文中,我们根据信息动力学的统计字段理论介绍了此框架,统一了一系列的动态过程,该过程管理在静态或时间变化的结构之上信息的演变。我们表明,信息运营商形成有意义的统计集合,其叠加定义了可用于分析复杂动力学的密度矩阵。作为直接应用,我们表明集合的von Neumann熵可以是对复杂系统功能多样性的量度,该功能多样性根据其组件之间高阶相互作用的功能分化而定义。我们的结果表明,模块化和层次结构,这是从人脑到社会和城市网络的经验复杂系统的两个关键特征 - 发挥了保证功能多样性的关键作用,因此受到青睐。

The constituents of a complex system exchange information to function properly. Their signalling dynamics often leads to the appearance of emergent phenomena, such as phase transitions and collective behaviors. While information exchange has been widely modeled by means of distinct spreading processes -- such as continuous-time diffusion, random walks, synchronization and consensus -- on top of complex networks, a unified and physically-grounded framework to study information dynamics and gain insights about the macroscopic effects of microscopic interactions, is still eluding us. In this article, we present this framework in terms of a statistical field theory of information dynamics, unifying a range of dynamical processes governing the evolution of information on top of static or time varying structures. We show that information operators form a meaningful statistical ensemble and their superposition defines a density matrix that can be used for the analysis of complex dynamics. As a direct application, we show that the von Neumann entropy of the ensemble can be a measure of the functional diversity of complex systems, defined in terms of the functional differentiation of higher-order interactions among their components. Our results suggest that modularity and hierarchy, two key features of empirical complex systems -- from the human brain to social and urban networks -- play a key role to guarantee functional diversity and, consequently, are favored.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源