论文标题

在存在异质背景速度字段的情况下,一种新的唤醒合并方法用于风向电源电源预测

A new wake-merging method for wind-farm power prediction in presence of heterogeneous background velocity fields

论文作者

Lanzilao, Luca, Meyers, Johan

论文摘要

许多风电场位于沿海地区附近或地形障碍物附近。这些区域中发展的中级梯度使风电场在速度很少均匀的速度场中运行。但是,依靠单一的风速值,通常在第一行涡轮机的上游几百米,都在农场内外的所有现有的唤醒方法都假设农场内及其周围的背景速度场都具有均匀的背景速度场。在这项研究中,我们得出了一种新的支持动量的唤醒方法,该方法能够在异质背景速度场上叠加醒来的流量。我们将提出的唤醒方法与四种不同的唤醒模型相结合,即高斯,超级高斯,双高斯和伊西哈拉模型,我们根据LES数据,双方多普勒雷达测量值和SCADA数据测试了其性能,来自Horns Rev,London Rev,London Array和Westermost Rough Farm。接下来,作为另一个参考,还包括具有二次叠加的标准詹森模型。结果表明,新方法的性能与均匀条件下速度缺陷的线性叠加相似,但是当使用空间变化的背景速度时,它显示出更好的性能。当唤醒方法与双高斯和高斯单车模型相结合时,获得最准确的估计值。 Ishihara模型还与观察结果显示了良好的协议。与此相比,詹森和超级高斯唤醒模型低估了我们分析中考虑的所有风速,风向和风电场的农场力量输出。

Many wind farms are placed near coastal regions or in proximity of orographic obstacles. The meso-scale gradients that develop in these zones make wind farms operating in velocity fields that are rarely uniform. However, all existing wake-merging methods in engineering wind-farm wake models assume a homogeneous background velocity field in and around the farm, relying on a single wind-speed value usually measured several hundreds of meters upstream of the first row of turbines. In this study, we derive a new momentum-conserving wake-merging method capable of superimposing the waked flow on a heterogeneous background velocity field. We couple the proposed wake-merging method with four different wake models, i.e. the Gaussian, super-Gaussian, double-Gaussian and Ishihara model, and we test its performance against LES data, dual-Doppler radar measurements and SCADA data from the Horns Rev, London Array, and Westermost Rough farm. Next to this, as an additional point of reference, the standard Jensen model with quadratic superposition is also included. Results show that the new method performs similarly to linear superposition of velocity deficits in homogeneous conditions but it shows better performance when a spatially varying background velocity is used. The most accurate estimates are obtained when the wake-merging method is coupled with the double-Gaussian and Gaussian single-wake model. The Ishihara model also shows good agreements with observations. In contrast to this, the Jensen and super-Gaussian wake model underestimate the farm power output for all wind speeds, wind directions and wind farms considered in our analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源