论文标题

从可行的SDP和体积近似的有效采样

Efficient Sampling from Feasible Sets of SDPs and Volume Approximation

论文作者

Chalkis, Apostolos, Emiris, Ioannis, Fisikopoulos, Vissarion, Repouskos, Panagiotis, Tsigaridas, Elias

论文摘要

我们介绍了来自Spectrahedron的采样点的问题,即半决赛程序的可行区域。我们的主要工具是几何随机步行。我们分析了基于Spectrahedra的代数特性和多项式特征值问题的某些原始几何操作的算术和位复杂性。这项研究导致实施了一系列随机步行,用于从Spectrahedra进行抽样,这些步伐比当前在理论研究或应用中使用的方法(包括流行的撞车和跑步家族)相比,实验表现出更快的混合时间。不同的随机步道提供了各种优势,从而使我们能够有效地从一般概率分布中进行采样,例如在许多应用中出现的对数 - concave分布的家族。我们专注于独立关注的两个主要应用:(i)近似谱系的体积,(ii)计算来自强大的最佳控制功能的功能的期望。我们利用有效的线性代数算法和实现,以在非常高的维度中解决上述计算。特别是,我们提供了我们的方法的C ++开源实现,该实现首次有效地扩展了Dimension 200。我们在各种数据集上说明了其效率。

We present algorithmic, complexity, and implementation results on the problem of sampling points from a spectrahedron, that is the feasible region of a semidefinite program. Our main tool is geometric random walks. We analyze the arithmetic and bit complexity of certain primitive geometric operations that are based on the algebraic properties of spectrahedra and the polynomial eigenvalue problem. This study leads to the implementation of a broad collection of random walks for sampling from spectrahedra that experimentally show faster mixing times than methods currently employed either in theoretical studies or in applications, including the popular family of Hit-and-Run walks. The different random walks offer a variety of advantages , thus allowing us to efficiently sample from general probability distributions, for example the family of log-concave distributions which arise in numerous applications. We focus on two major applications of independent interest: (i) approximate the volume of a spectrahedron, and (ii) compute the expectation of functions coming from robust optimal control. We exploit efficient linear algebra algorithms and implementations to address the aforemen-tioned computations in very high dimension. In particular, we provide a C++ open source implementation of our methods that scales efficiently, for the first time, up to dimension 200. We illustrate its efficiency on various data sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源