论文标题

Teukolsky方程的分析解决方案,用于在Sitter背景中任何自旋的无质量扰动

Analytic solutions of the Teukolsky equation for massless perturbations of any spin in de Sitter background

论文作者

Zhang, Yao-Zhong

论文摘要

我们介绍了Teukolsky方程的分析解决方案,以实现4维设立背景中任何自旋的无质量扰动。方程的角部分将分离常数固定为离散集,其解决方案由超几何多项式给出。对于径向部分,我们得出了分析能力系列解决方案,该解在极点处是规则的,并确定了一个先验函数,其零为波频率的特征值。我们研究了对径向方程的显式多项式溶液的存在,并获得了两类的奇异闭合溶液,一种溶液具有离散波频率,另一种具有连续的频谱。

We present analytic solutions to the Teukolsky equation for massless perturbations of any spin in the 4-dimensional de Sitter background. The angular part of the equation fixes the separation constant to a discrete set and its solution is given by hypergeometric polynomials. For the radial part, we derive analytic power series solution which is regular at the poles and determine a transcendental function whose zeros give the characteristic values of the wave frequency. We study the existence of explicit polynomial solutions to the radial equation and obtain two classes of singular closed-form solutions, one with discrete wave frequencies and the other with continuous frequency spectra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源