论文标题
流量:选择的公理与分区原理无关
Flow: the Axiom of Choice is independent from the Partition Principle
论文作者
论文摘要
我们介绍了一种称为流的功能的一般理论。我们证明ZF,非井中的ZF和ZFC可以浸入流中,这是我们框架的自然结果。强烈无法访问的红衣主教的存在来自我们的公理。我们的第一个重要应用是引入Zermelo-fraenkel集理论的模型,其中分区原理(PP)具有选择的公理(AC)。因此,流程使我们能够回答集合理论中最古老的开放问题:如果PP需要AC。
We introduce a general theory of functions called Flow. We prove ZF, non-well founded ZF and ZFC can be immersed within Flow as a natural consequence from our framework. The existence of strongly inaccessible cardinals is entailed from our axioms. And our first important application is the introduction of a model of Zermelo-Fraenkel set theory where the Partition Principle (PP) holds but not the Axiom of Choice (AC). So, Flow allows us to answer to the oldest open problem in set theory: if PP entails AC.