论文标题
用于高维偏微分方程的Actor-Critic算法
Actor-Critic Algorithm for High-dimensional Partial Differential Equations
论文作者
论文摘要
我们开发了一个深度学习模型,以有效解决高维非线性抛物线偏微分方程(PDE)。我们遵循Feynman-kac公式,将PDE重新调整为受后向随机微分方程(BSDE)系统控制的等效随机控制问题。 BSDE的Markovian属性用于设计我们的神经网络体系结构,该建筑的灵感来自参与者批评算法,通常用于深入增强学习。与最先进的模型相比,我们进行了几项改进,包括1)大大降低了可训练的参数,2)更快的收敛速度和3)调节的超参数较少。我们通过求解一些众所周知的PDE类别,例如汉密尔顿 - 雅各布 - 贝尔曼方程,艾伦 - 卡恩方程和黑色 - choles方程,以100的顺序来证明这些改进。
We develop a deep learning model to effectively solve high-dimensional nonlinear parabolic partial differential equations (PDE). We follow Feynman-Kac formula to reformulate PDE into the equivalent stochastic control problem governed by a Backward Stochastic Differential Equation (BSDE) system. The Markovian property of the BSDE is utilized in designing our neural network architecture, which is inspired by the Actor-Critic algorithm usually applied for deep Reinforcement Learning. Compared to the State-of-the-Art model, we make several improvements including 1) largely reduced trainable parameters, 2) faster convergence rate and 3) fewer hyperparameters to tune. We demonstrate those improvements by solving a few well-known classes of PDEs such as Hamilton-Jacobian-Bellman equation, Allen-Cahn equation and Black-Scholes equation with dimensions on the order of 100.