论文标题

通过链接预测,文本的归纳实体表示

Inductive Entity Representations from Text via Link Prediction

论文作者

Daza, Daniel, Cochez, Michael, Groth, Paul

论文摘要

知识图(kg)对于网络上的多个应用程序(包括信息检索,推荐系统和元数据注释)至关重要。无论它们是由域专家手动构建还是自动管道,KG通常都不完整。最近的工作已经开始探讨知识图中可用的文本描述的使用来学习实体的向量表示,以便预先链接预测。但是,这些表示为链接预测所学的程度尚不清楚。考虑到学习此类表示的成本,这一点很重要。理想情况下,我们希望在转移到另一个任务时不需要再次培训的表示,同时保持合理的绩效。 在这项工作中,我们为通过链接预测目标学到的实体表示形式提出了整体评估协议。我们考虑归纳链路预测和实体分类任务,这些任务涉及培训期间未见的实体。我们还考虑针对实体搜索的信息检索任务。我们评估了基于预处理的语言模型的体系结构,该体系结构表现出对在训练过程中未观察到的实体的强烈概括,并且胜过相关的最先进方法(平均而言,MRR平均有22%的MRR改善)。我们进一步提供了证据表明,学习的表示形式在没有微调的情况下很好地转移到了其他任务。在实体分类任务中,与也采用预训练模型的基线相比,我们的准确性平均改善16%。在信息检索任务中,我们可以在NDCG@10中获得高达8.8%的自然语言查询。因此,我们表明,学到的表示不限于KG特定的任务,并且比以前的工作中评估的具有更大的概括属性。

Knowledge Graphs (KG) are of vital importance for multiple applications on the web, including information retrieval, recommender systems, and metadata annotation. Regardless of whether they are built manually by domain experts or with automatic pipelines, KGs are often incomplete. Recent work has begun to explore the use of textual descriptions available in knowledge graphs to learn vector representations of entities in order to preform link prediction. However, the extent to which these representations learned for link prediction generalize to other tasks is unclear. This is important given the cost of learning such representations. Ideally, we would prefer representations that do not need to be trained again when transferring to a different task, while retaining reasonable performance. In this work, we propose a holistic evaluation protocol for entity representations learned via a link prediction objective. We consider the inductive link prediction and entity classification tasks, which involve entities not seen during training. We also consider an information retrieval task for entity-oriented search. We evaluate an architecture based on a pretrained language model, that exhibits strong generalization to entities not observed during training, and outperforms related state-of-the-art methods (22% MRR improvement in link prediction on average). We further provide evidence that the learned representations transfer well to other tasks without fine-tuning. In the entity classification task we obtain an average improvement of 16% in accuracy compared with baselines that also employ pre-trained models. In the information retrieval task, we obtain significant improvements of up to 8.8% in NDCG@10 for natural language queries. We thus show that the learned representations are not limited KG-specific tasks, and have greater generalization properties than evaluated in previous work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源