论文标题
与Wasserstein AutoCoder一起学习解开表示
Learning disentangled representations with the Wasserstein Autoencoder
论文作者
论文摘要
毫无疑问,分散的表示学习从目标功能手术中受益。但是,仍然需要进行微妙的调整平衡行为,以权衡重建保真度与分离。我们提出了以前惩罚潜在变量的总相关性的成功,我们提出了TCWAE(完全相关的Wasserstein AutoCoder)。在WAE范式中工作自然可以使总相关术语的分离,从而提供对学习表示形式的分离控制,同时在选择重建成本方面具有更大的灵活性。我们建议使用不同的KL估计器进行两种变体,并对具有已知生成因子的数据集进行广泛的定量比较,显示相对于最新技术的竞争结果。我们进一步研究了在具有未知生成因素的更缺乏的数据集上解开和重建之间的权衡,其中重建项中WAE范式的灵活性改善了重建。
Disentangled representation learning has undoubtedly benefited from objective function surgery. However, a delicate balancing act of tuning is still required in order to trade off reconstruction fidelity versus disentanglement. Building on previous successes of penalizing the total correlation in the latent variables, we propose TCWAE (Total Correlation Wasserstein Autoencoder). Working in the WAE paradigm naturally enables the separation of the total-correlation term, thus providing disentanglement control over the learned representation, while offering more flexibility in the choice of reconstruction cost. We propose two variants using different KL estimators and perform extensive quantitative comparisons on data sets with known generative factors, showing competitive results relative to state-of-the-art techniques. We further study the trade off between disentanglement and reconstruction on more-difficult data sets with unknown generative factors, where the flexibility of the WAE paradigm in the reconstruction term improves reconstructions.