论文标题

遵守数据驱动模型的有效性限制

Obey validity limits of data-driven models

论文作者

Schweidtmann, Artur M, Weber, Jana M, Wende, Christian, Netze, Linus, Mitsos, Alexander

论文摘要

数据驱动的模型在工程中越来越流行,或者与机械模型结合使用。通常,训练有素的模型随后用于基于模型的设计和/或过程操作的优化。因此,至关重要的是要确保在过程优化期间未在其有效性域之外评估数据驱动的模型。我们提出了一种学习此有效性域并将其编码为过程优化中的约束的方法。我们首先使用持续的同源性进行拓扑数据分析,以识别训练数据中的潜在孔或分离的簇。如果确定了簇或孔,我们将在训练数据域上训练单级分类器,即单级支持向量机,并将其编码为随后的过程优化中的约束。否则,我们构建数据的凸壳并将其编码为约束。我们最终对受其有效性约束的数据驱动模型进行确定性的全局过程优化。为了确保计算障碍性,我们为训练有素的一级支撑矢量机开发了一个缩小的空间公式,并表明我们的公式的表现优于常见的全空间配方,超过3,000倍,使其成为工程应用程序的可行工具。该方法可用来使用,并作为我们的瓜工具箱的一部分(https://git.rwth-aachen.de/avt.svt/public/melon)。

Data-driven models are becoming increasingly popular in engineering, on their own or in combination with mechanistic models. Commonly, the trained models are subsequently used in model-based optimization of design and/or operation of processes. Thus, it is critical to ensure that data-driven models are not evaluated outside their validity domain during process optimization. We propose a method to learn this validity domain and encode it as constraints in process optimization. We first perform a topological data analysis using persistent homology identifying potential holes or separated clusters in the training data. In case clusters or holes are identified, we train a one-class classifier, i.e., a one-class support vector machine, on the training data domain and encode it as constraints in the subsequent process optimization. Otherwise, we construct the convex hull of the data and encode it as constraints. We finally perform deterministic global process optimization with the data-driven models subject to their respective validity constraints. To ensure computational tractability, we develop a reduced-space formulation for trained one-class support vector machines and show that our formulation outperforms common full-space formulations by a factor of over 3,000, making it a viable tool for engineering applications. The method is ready-to-use and available open-source as part of our MeLOn toolbox (https://git.rwth-aachen.de/avt.svt/public/MeLOn).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源