论文标题

Qarsumo:平行的,拥挤的交通模拟器

QarSUMO: A Parallel, Congestion-optimized Traffic Simulator

论文作者

Chen, Hao, Yang, Ke, Rizzo, Stefano Giovanni, Vantini, Giovanna, Taylor, Phillip, Ma, Xiaosong, Chawla, Sanjay

论文摘要

交通模拟器是城市规划和运输管理等任务的重要工具。显微镜模拟器允许每辆车运动模拟,但需要更长的模拟时间。当有交通拥堵并且大多数车辆移动缓慢时,仿真开销会加剧。这尤其损害了基于强化学习的新兴城市计算研究的生产力,在此过程中,交通模拟大量并反复用于设计政策以优化与交通相关的任务。 在本文中,我们开发了Qarsumo,这是流行的Sumo开源交通模拟器的平行,拥挤优化的版本。 Qarsumo在Sumo之上执行高级并行化,以利用功能强大的多核服务器,并在必要时启用将来扩展到多节点并行模拟。拟议的设计虽然部分牺牲了加速,却使Qarsumo与未来的相扑兼容。我们通过修改Sumo仿真引擎的拥堵场景,进一步贡献了这种改进,在这种情况下,可以简化连续和缓慢的车辆的更新计算。 我们使用现实世界和合成道路网络和交通数据评估Qarsumo,并检查其执行时间以及相对于原始的顺序Sumo的模拟精度。

Traffic simulators are important tools for tasks such as urban planning and transportation management. Microscopic simulators allow per-vehicle movement simulation, but require longer simulation time. The simulation overhead is exacerbated when there is traffic congestion and most vehicles move slowly. This in particular hurts the productivity of emerging urban computing studies based on reinforcement learning, where traffic simulations are heavily and repeatedly used for designing policies to optimize traffic related tasks. In this paper, we develop QarSUMO, a parallel, congestion-optimized version of the popular SUMO open-source traffic simulator. QarSUMO performs high-level parallelization on top of SUMO, to utilize powerful multi-core servers and enables future extension to multi-node parallel simulation if necessary. The proposed design, while partly sacrificing speedup, makes QarSUMO compatible with future SUMO improvements. We further contribute such an improvement by modifying the SUMO simulation engine for congestion scenarios where the update computation of consecutive and slow-moving vehicles can be simplified. We evaluate QarSUMO with both real-world and synthetic road network and traffic data, and examine its execution time as well as simulation accuracy relative to the original, sequential SUMO.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源