论文标题
DIFFMG:可区分的元图搜索异质图神经网络
DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neural Networks
论文作者
论文摘要
在本文中,我们提出了一个新颖的框架,以自动利用任务依赖的语义信息,该信息在异质信息网络(HINS)中编码。具体而言,我们搜索一个比元路径可以捕获更复杂的语义关系的元图,以确定图形神经网络(GNNS)如何沿不同类型的边缘传播消息。我们在神经体系结构搜索(NAS)的框架内正式将问题形式化,然后以可区分的方式执行搜索。我们以定向无环图(DAG)的形式设计一个表达性的搜索空间,以表示Hin的候选元图,并提出了与任务有关的类型约束,以滤除这些边缘类型,而消息传递对与下游任务相关的节点的表示没有影响。我们定义的搜索空间的大小是巨大的,因此我们进一步提出了一种新颖有效的搜索算法,以使总搜索成本与一次培训单个GNN相等。与现有流行的NAS算法相比,我们提出的搜索算法提高了搜索效率。我们对不同的呼吸和下游任务进行了广泛的实验以评估我们的方法,实验结果表明,与那些可以隐含地学习元路径的方法相比,我们的方法可以超越最先进的异质GNN,并提高效率。
In this paper, we propose a novel framework to automatically utilize task-dependent semantic information which is encoded in heterogeneous information networks (HINs). Specifically, we search for a meta graph, which can capture more complex semantic relations than a meta path, to determine how graph neural networks (GNNs) propagate messages along different types of edges. We formalize the problem within the framework of neural architecture search (NAS) and then perform the search in a differentiable manner. We design an expressive search space in the form of a directed acyclic graph (DAG) to represent candidate meta graphs for a HIN, and we propose task-dependent type constraint to filter out those edge types along which message passing has no effect on the representations of nodes that are related to the downstream task. The size of the search space we define is huge, so we further propose a novel and efficient search algorithm to make the total search cost on a par with training a single GNN once. Compared with existing popular NAS algorithms, our proposed search algorithm improves the search efficiency. We conduct extensive experiments on different HINs and downstream tasks to evaluate our method, and experimental results show that our method can outperform state-of-the-art heterogeneous GNNs and also improves efficiency compared with those methods which can implicitly learn meta paths.