论文标题

Realsmilenet:一个自发和姿势的深入端到端网络

RealSmileNet: A Deep End-To-End Network for Spontaneous and Posed Smile Recognition

论文作者

Yang, Yan, Hossain, Md Zakir, Gedeon, Tom, Rahman, Shafin

论文摘要

微笑在对不同社区内社会互动的理解中起着至关重要的作用,并以真实和欺骗性的方式揭示了人们的身体状态。已经提出了几种方法来识别自发并露出微笑。所有人都遵循基于功能工程的管道,需要昂贵的预处理步骤,例如对面部标志的手动注释,跟踪,微笑阶段的细分以及手工制作的功能。最终的计算很昂贵,并且很大程度上取决于预处理步骤。我们研究了一个端到端的深度学习模型来解决这些问题,这是自发和摆姿势识别的第一个端到端模型。我们的全自动模型快速,并通过从头开始训练一系列卷积和弯曲层来学习特征提取过程。我们在四个数据集上的实验通过实现最先进的性能来证明所提出模型的鲁棒性和概括。

Smiles play a vital role in the understanding of social interactions within different communities, and reveal the physical state of mind of people in both real and deceptive ways. Several methods have been proposed to recognize spontaneous and posed smiles. All follow a feature-engineering based pipeline requiring costly pre-processing steps such as manual annotation of face landmarks, tracking, segmentation of smile phases, and hand-crafted features. The resulting computation is expensive, and strongly dependent on pre-processing steps. We investigate an end-to-end deep learning model to address these problems, the first end-to-end model for spontaneous and posed smile recognition. Our fully automated model is fast and learns the feature extraction processes by training a series of convolution and ConvLSTM layer from scratch. Our experiments on four datasets demonstrate the robustness and generalization of the proposed model by achieving state-of-the-art performances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源